Difference between revisions of "1982 AHSME Problems/Problem 23"

Line 10: Line 10:
  
 
== Solution 1 ==
 
== Solution 1 ==
 +
In <math>\triangle ABC,</math> let <math>a=n,b=n+1,c=n+2,</math> and <math>\angle A=\theta</math> for some positive integer <math>n.</math> We are given that <math>\angle C=2\theta,</math> and we need <math>\cos\theta.</math>
 +
 +
We apply the Law of Cosines to solve for <math>\cos\angle A:</math> <cmath>\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.</cmath>
 +
 +
Let the brackets denote areas. We find <math>[ABC]</math> using <math>\sin\angle A</math> and <math>\sin\angle C:</math> <cmath>[ABC]=\frac12 bc\sin\theta=\frac12 ab\sin(2\theta).</cmath>
 +
Recall that <math>\sin(2\theta)=2\sin\theta\cos\theta</math> holds for all <math>\theta.</math> Equating the last two expressions and then simplifying, we have <cmath>\cos\theta=\frac{c}{2a}=\frac{n+2}{2n}.</cmath>
 +
Equating the expressions for <math>\cos\theta,</math> we get <cmath>\frac{n+5}{2(n+2)}=\frac{n+2}{2n},</cmath>
 +
from which <math>n=4.</math> By substitution, the answer is <math>\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.</math>
 +
 +
~MRENTHUSIASM
 +
 +
== Solution 2 ==
 
In <math>\triangle ABC,</math> let <math>a=n,b=n+1,c=n+2,</math> and <math>\angle A=\theta</math> for some positive integer <math>n.</math> We are given that <math>\angle C=2\theta,</math> and we need <math>\cos\theta.</math>
 
In <math>\triangle ABC,</math> let <math>a=n,b=n+1,c=n+2,</math> and <math>\angle A=\theta</math> for some positive integer <math>n.</math> We are given that <math>\angle C=2\theta,</math> and we need <math>\cos\theta.</math>
  
 
We apply the Law of Cosines to solve for <math>\cos\angle A:</math> <cmath>\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.</cmath>
 
We apply the Law of Cosines to solve for <math>\cos\angle A:</math> <cmath>\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.</cmath>
 
We apply the Law of Cosines to solve for <math>\cos\angle C:</math> <cmath>\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.</cmath>
 
We apply the Law of Cosines to solve for <math>\cos\angle C:</math> <cmath>\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.</cmath>
By the Double-Angle Formula <math>\cos(2\theta)=2\cos^2\theta-1,</math> we have <cmath>2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},</cmath> from which <math>n=-3,-\frac12,4.</math> Recall that <math>n</math> is a positive integer, so <math>n=4.</math> By substitution, the answer is <math>\boxed{\textbf{(A)}\ \frac{3}{4}}.</math>
+
By the Double-Angle Formula <math>\cos(2\theta)=2\cos^2\theta-1,</math> we have <cmath>2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},</cmath> from which <math>n=-3,-\frac12,4.</math> Recall that <math>n</math> is a positive integer, so <math>n=4.</math> By substitution, the answer is <math>\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
== Solution 2 ==
+
== Solution 3 ==
  
 
== See Also ==
 
== See Also ==
 
{{AHSME box|year=1982|num-b=22|num-a=24}}
 
{{AHSME box|year=1982|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:03, 14 September 2021

Problem

The lengths of the sides of a triangle are consecutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is

$\textbf{(A)}\ \frac{3}{4}\qquad \textbf{(B)}\ \frac{7}{10}\qquad \textbf{(C)}\ \frac{2}{3}\qquad \textbf{(D)}\ \frac{9}{14}\qquad \textbf{(E)}\ \text{none of these}$

Solution 1

In $\triangle ABC,$ let $a=n,b=n+1,c=n+2,$ and $\angle A=\theta$ for some positive integer $n.$ We are given that $\angle C=2\theta,$ and we need $\cos\theta.$

We apply the Law of Cosines to solve for $\cos\angle A:$ \[\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.\]

Let the brackets denote areas. We find $[ABC]$ using $\sin\angle A$ and $\sin\angle C:$ \[[ABC]=\frac12 bc\sin\theta=\frac12 ab\sin(2\theta).\] Recall that $\sin(2\theta)=2\sin\theta\cos\theta$ holds for all $\theta.$ Equating the last two expressions and then simplifying, we have \[\cos\theta=\frac{c}{2a}=\frac{n+2}{2n}.\] Equating the expressions for $\cos\theta,$ we get \[\frac{n+5}{2(n+2)}=\frac{n+2}{2n},\] from which $n=4.$ By substitution, the answer is $\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.$

~MRENTHUSIASM

Solution 2

In $\triangle ABC,$ let $a=n,b=n+1,c=n+2,$ and $\angle A=\theta$ for some positive integer $n.$ We are given that $\angle C=2\theta,$ and we need $\cos\theta.$

We apply the Law of Cosines to solve for $\cos\angle A:$ \[\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.\] We apply the Law of Cosines to solve for $\cos\angle C:$ \[\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.\] By the Double-Angle Formula $\cos(2\theta)=2\cos^2\theta-1,$ we have \[2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},\] from which $n=-3,-\frac12,4.$ Recall that $n$ is a positive integer, so $n=4.$ By substitution, the answer is $\cos\theta=\boxed{\textbf{(A)}\ \frac{3}{4}}.$

~MRENTHUSIASM

Solution 3

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png