Difference between revisions of "2021 Fall AMC 12A Problems/Problem 11"

m
Line 4: Line 4:
 
<math>\textbf{(A)}\ 12\sqrt{2} \qquad\textbf{(B)}\ 10\sqrt{3} \qquad\textbf{(C)}\ \sqrt{17 \cdot 19} \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 8\sqrt{6}</math>
 
<math>\textbf{(A)}\ 12\sqrt{2} \qquad\textbf{(B)}\ 10\sqrt{3} \qquad\textbf{(C)}\ \sqrt{17 \cdot 19} \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 8\sqrt{6}</math>
  
==Solution 1 (Power of a Point)==
+
==Solution 1 (Pythagorean Theorem)==
  
Draw the diameter perpendicular to the chord. Call the intersection between that diameter and the chord <math>A</math>. In the circle of radius <math>17</math>, let the shorter piece of the diameter cut by the chord would be of length <math>x</math>, making the longer piece <math>34-x.</math> In that same circle, let the <math>y</math> be the length of the portion of the chord in the smaller circle that is cut by the diameter we drew. Thus, in the circle of radius <math>7</math>, the shorter piece of the diameter cut by the chord would be of length <math>x+2</math>, making the longer piece <math>36-x,</math> and length of the piece of the chord cut by the diameter would be <math>2y</math> (as given in the problem). By [[Power of a Point Theorem|Power of a Point]], we can construct the system of equations <cmath>x(34-x) = y^2</cmath><cmath>(x+2)(36-x) = (y+2)^2</cmath>Expanding both equations, we get <math>34x-x^2 = y^2</math> and <math>36x-x^2+72-2x = 4y^2,</math> in which the <math>34x</math> and <math>-x^2</math> terms magically cancel when we subtract the first equation from the second equation. Thus, now we have <math>72 = 3y^2 \implies y = 2\sqrt{6} \implies 4y = \boxed{\textbf{(E)} \: 8\sqrt{6}}</math>.
+
Label the center of both circles <math>O</math>. Label the chord in the larger circle as <math>\overline{ABCD}</math>, where <math>A</math> and <math>D</math> are on the larger circle and <math>B</math> and <math>C</math> are on the smaller circle. Construct the radius perpendicular to the chord and label their intersection as <math>M</math>. Because a radius that is perpendicular to a chord bisects the chord, <math>M</math> is the midpoint of the chord.  
 
 
-fidgetboss_4000
 
 
 
==Solution 2 (Pythagorean Theorem)==
 
 
 
Label the center of both circles <math>O</math>. Label the chord in the larger circle <math>\overline{ABCD}</math> where <math>A</math> and <math>D</math> are on the larger circle and <math>B</math> and <math>C</math> are on the smaller circle. Construct the radius perpendicular to the chord and label their intersection as <math>M</math>. <math>M</math> is the midpoint of the chord because a radius that is perpendicular to a chord bisects the chord.  
 
  
 
Construct segments <math>\overline{AO}</math> and <math>\overline{BO}</math>. These are radii with lengths 17 and 19 respectively.  
 
Construct segments <math>\overline{AO}</math> and <math>\overline{BO}</math>. These are radii with lengths 17 and 19 respectively.  
Line 29: Line 23:
 
\begin{align*}
 
\begin{align*}
 
OM^2 & = OB^2 - BM^2 \\
 
OM^2 & = OB^2 - BM^2 \\
& = OC^2 - \left( \frac{BC}{2} \right)^2 \\
+
& = OB^2 - \left( \frac{BC}{2} \right)^2 \\
& = OC^2 - \left( \frac{AD}{4} \right)^2 \\
+
& = OB^2 - \left( \frac{AD}{4} \right)^2 \\
 
& = 17^2 - \frac{AD^2}{16} .
 
& = 17^2 - \frac{AD^2}{16} .
 
\end{align*}
 
\end{align*}
 
</cmath>
 
</cmath>
  
Equating these two expressions, we get <cmath>19^2 - \frac{AD^2}{4} = 17^2 - \frac{AD^2}{16}</cmath> and <math>AD=\boxed{\textbf{(E) }8 \sqrt{6}}</math>.
+
Equating these two expressions, we get  
 +
<cmath>19^2 - \frac{AD^2}{4} = 17^2 - \frac{AD^2}{16}</cmath>
 +
and <math>AD=\boxed{\textbf{(E) }8 \sqrt{6}}</math>.
  
 
~eisthefifthletter and [https://www.professorchenedu.com Steven Chen]
 
~eisthefifthletter and [https://www.professorchenedu.com Steven Chen]
 +
 +
==Solution 2 (Power of a Point)==
 +
 +
Draw the diameter perpendicular to the chord. Call the intersection between that diameter and the chord <math>A</math>. In the circle of radius <math>17</math>, let the shorter piece of the diameter cut by the chord would be of length <math>x</math>, making the longer piece <math>34-x.</math> In that same circle, let the <math>y</math> be the length of the portion of the chord in the smaller circle that is cut by the diameter we drew. Thus, in the circle of radius <math>7</math>, the shorter piece of the diameter cut by the chord would be of length <math>x+2</math>, making the longer piece <math>36-x,</math> and length of the piece of the chord cut by the diameter would be <math>2y</math> (as given in the problem). By [[Power of a Point Theorem|Power of a Point]], we can construct the system of equations <cmath>x(34-x) = y^2</cmath><cmath>(x+2)(36-x) = (y+2)^2</cmath>Expanding both equations, we get <math>34x-x^2 = y^2</math> and <math>36x-x^2+72-2x = 4y^2,</math> in which the <math>34x</math> and <math>-x^2</math> terms magically cancel when we subtract the first equation from the second equation. Thus, now we have <math>72 = 3y^2 \implies y = 2\sqrt{6} \implies 4y = \boxed{\textbf{(E)} \: 8\sqrt{6}}</math>.
 +
 +
-fidgetboss_4000
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021 Fall|ab=A|num-b=10|num-a=12}}
 
{{AMC12 box|year=2021 Fall|ab=A|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:46, 26 November 2021

Problem

Consider two concentric circles of radius $17$ and $19.$ The larger circle has a chord, half of which lies inside the smaller circle. What is the length of the chord in the larger circle?

$\textbf{(A)}\ 12\sqrt{2} \qquad\textbf{(B)}\ 10\sqrt{3} \qquad\textbf{(C)}\ \sqrt{17 \cdot 19} \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 8\sqrt{6}$

Solution 1 (Pythagorean Theorem)

Label the center of both circles $O$. Label the chord in the larger circle as $\overline{ABCD}$, where $A$ and $D$ are on the larger circle and $B$ and $C$ are on the smaller circle. Construct the radius perpendicular to the chord and label their intersection as $M$. Because a radius that is perpendicular to a chord bisects the chord, $M$ is the midpoint of the chord.

Construct segments $\overline{AO}$ and $\overline{BO}$. These are radii with lengths 17 and 19 respectively.

Then, use the Pythagorean Theorem. In $\triangle OMA$, we have \begin{align*} OM^2 & = OA^2 - AM^2 \\ & = OA^2 - \left( \frac{AD}{2} \right)^2 \\ & = 19^2 - \frac{AD^2}{4} . \end{align*}

In $\triangle OMB$, we have \begin{align*} OM^2 & = OB^2 - BM^2 \\ & = OB^2 - \left( \frac{BC}{2} \right)^2 \\ & = OB^2 - \left( \frac{AD}{4} \right)^2 \\ & = 17^2 - \frac{AD^2}{16} . \end{align*}

Equating these two expressions, we get \[19^2 - \frac{AD^2}{4} = 17^2 - \frac{AD^2}{16}\] and $AD=\boxed{\textbf{(E) }8 \sqrt{6}}$.

~eisthefifthletter and Steven Chen

Solution 2 (Power of a Point)

Draw the diameter perpendicular to the chord. Call the intersection between that diameter and the chord $A$. In the circle of radius $17$, let the shorter piece of the diameter cut by the chord would be of length $x$, making the longer piece $34-x.$ In that same circle, let the $y$ be the length of the portion of the chord in the smaller circle that is cut by the diameter we drew. Thus, in the circle of radius $7$, the shorter piece of the diameter cut by the chord would be of length $x+2$, making the longer piece $36-x,$ and length of the piece of the chord cut by the diameter would be $2y$ (as given in the problem). By Power of a Point, we can construct the system of equations \[x(34-x) = y^2\]\[(x+2)(36-x) = (y+2)^2\]Expanding both equations, we get $34x-x^2 = y^2$ and $36x-x^2+72-2x = 4y^2,$ in which the $34x$ and $-x^2$ terms magically cancel when we subtract the first equation from the second equation. Thus, now we have $72 = 3y^2 \implies y = 2\sqrt{6} \implies 4y = \boxed{\textbf{(E)} \: 8\sqrt{6}}$.

-fidgetboss_4000

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png