Difference between revisions of "1966 IMO Problems/Problem 2"

(A full proof of the question is given)
Line 1: Line 1:
Let <math>A</math>, <math>B</math>, and <math>C</math> be the lengths of the sides of a triangle, and <math> \alpha,\beta,\gamma </math> respectively, the angles opposite these sides.  
+
Let <math>a</math>, <math>b</math>, and <math>c</math> be the lengths of the sides of a triangle, and <math> \alpha,\beta,\gamma </math> respectively, the angles opposite these sides. If,
  
 
<cmath> a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) </cmath>
 
<cmath> a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) </cmath>
  
Prove that if the triangle is isosceles.
+
Prove that the triangle is isosceles.
  
 
==Solution==
 
==Solution==
{{solution}}
+
We'll prove that the triangle is isosceles with <math>a=b</math>.
 +
We'll prove that <math>a=b</math>. Assume by way of contradiction WLOG that <math>a>b</math>.
 +
First notice that as <math>\gamma = \pi -\alpha-\beta</math> then and the identity <math>\tan\left(\frac \pi 2 - x \right)=\cot x</math> our equation becomes:
 +
<cmath>a+b=\cot \frac{\alpha +\beta}{2}\left(a\tan \alpha + b\tan \beta \right)</cmath><cmath>\iff a\tan\frac{\alpha +\beta}{2}+b\tan \frac{\alpha +\beta}{2}=a\tan \alpha + b\tan \beta  </cmath>
 +
<cmath>\iff a\left(\tan \alpha -\tan \frac{\alpha +\beta}{2}\right)+b\left(\tan \beta -\tan \frac{\alpha +\beta}{2}  \right)=0 </cmath>
 +
Using the identity <math>\tan (A-B)=\frac {\tan A-\tan B}{1+\tan A\tan B}</math> <math> \iff \tan A-\tan B=\tan(A-B)(1+\tan A\tan B)</math>
 +
and inserting this into the above equation we get:
 +
<cmath>\iff a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)+b\tan \frac{\beta -\alpha}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0 </cmath>
 +
<cmath>\underbrace{\iff}_{\tan -A=-\tan B}a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)-b\tan \frac{\alpha -\beta}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0  </cmath>
 +
<cmath>\iff \tan \frac{\alpha -\beta}{2}\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)=0 </cmath>
 +
Now, since <math>a>b</math> and the definitions of <math>a,b,\alpha,\beta</math> being part of the definition of a triangle, <math>\alpha >\beta</math>.
 +
Now, <math>\pi >\alpha -\beta >0</math> (as <math>\alpha+\beta +\gamma = \pi</math> and the angles are positive), <math>\tan \frac{\alpha -\beta}{2}\neq 0</math>, and furthermore, <math>\tan \frac{\alpha+\beta}{2}>0</math>. By all the above, <cmath>\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)>0</cmath>
 +
Which contradicts our assumption, thus <math>a\leq b</math>. By the symmetry of the condition, using the same arguments, <math>a\geq b</math>. Hence <math>a=b</math>.
  
 
==See Also==
 
==See Also==
 
{{IMO box|year=1966|num-b=1|num-a=3}}
 
{{IMO box|year=1966|num-b=1|num-a=3}}

Revision as of 13:28, 13 January 2022

Let $a$, $b$, and $c$ be the lengths of the sides of a triangle, and $\alpha,\beta,\gamma$ respectively, the angles opposite these sides. If,

\[a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta})\]

Prove that the triangle is isosceles.

Solution

We'll prove that the triangle is isosceles with $a=b$. We'll prove that $a=b$. Assume by way of contradiction WLOG that $a>b$. First notice that as $\gamma = \pi -\alpha-\beta$ then and the identity $\tan\left(\frac \pi 2 - x \right)=\cot x$ our equation becomes: \[a+b=\cot \frac{\alpha +\beta}{2}\left(a\tan \alpha + b\tan \beta \right)\]\[\iff a\tan\frac{\alpha +\beta}{2}+b\tan \frac{\alpha +\beta}{2}=a\tan \alpha + b\tan \beta\] \[\iff a\left(\tan \alpha -\tan \frac{\alpha +\beta}{2}\right)+b\left(\tan \beta -\tan \frac{\alpha +\beta}{2}  \right)=0\] Using the identity $\tan (A-B)=\frac {\tan A-\tan B}{1+\tan A\tan B}$ $\iff \tan A-\tan B=\tan(A-B)(1+\tan A\tan B)$ and inserting this into the above equation we get: \[\iff a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)+b\tan \frac{\beta -\alpha}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0\] \[\underbrace{\iff}_{\tan -A=-\tan B}a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)-b\tan \frac{\alpha -\beta}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0\] \[\iff \tan \frac{\alpha -\beta}{2}\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)=0\] Now, since $a>b$ and the definitions of $a,b,\alpha,\beta$ being part of the definition of a triangle, $\alpha >\beta$. Now, $\pi >\alpha -\beta >0$ (as $\alpha+\beta +\gamma = \pi$ and the angles are positive), $\tan \frac{\alpha -\beta}{2}\neq 0$, and furthermore, $\tan \frac{\alpha+\beta}{2}>0$. By all the above, \[\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)>0\] Which contradicts our assumption, thus $a\leq b$. By the symmetry of the condition, using the same arguments, $a\geq b$. Hence $a=b$.

See Also

1966 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions