Difference between revisions of "2022 USAJMO Problems"
Aidensharp (talk | contribs) |
Aidensharp (talk | contribs) |
||
Line 2: | Line 2: | ||
<math>\textbf{Note:}</math> For any geometry problem whose statement begins with an asterisk <math>(*)</math>, the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction. | <math>\textbf{Note:}</math> For any geometry problem whose statement begins with an asterisk <math>(*)</math>, the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction. | ||
===Problem 1=== | ===Problem 1=== | ||
− | |||
− | |||
− | |||
For which positive integers <math>m</math> does there exist an infinite arithmetic sequence of integers <math>a_1,a_2,\cdots</math> and an infinite geometric sequence of integers <math>g_1,g_2,\cdots</math> satisfying the following properties? | For which positive integers <math>m</math> does there exist an infinite arithmetic sequence of integers <math>a_1,a_2,\cdots</math> and an infinite geometric sequence of integers <math>g_1,g_2,\cdots</math> satisfying the following properties? | ||
Line 11: | Line 8: | ||
<math>\bullet</math> <math>a_2-a_1</math> is not divisible by <math>m</math>. | <math>\bullet</math> <math>a_2-a_1</math> is not divisible by <math>m</math>. | ||
+ | [[2022 USAJMO Problems/Problem 1|Solution]] | ||
===Problem 2=== | ===Problem 2=== | ||
Revision as of 20:07, 19 April 2022
Contents
[hide]Day 1
For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.
Problem 1
For which positive integers does there exist an infinite arithmetic sequence of integers and an infinite geometric sequence of integers satisfying the following properties?
is divisible by for all integers ;
is not divisible by .
Problem 2
Problem 3
Day 2
Problem 4
Problem 5
Problem 6
2021 USAJMO (Problems • Resources) | ||
Preceded by 2021 USAJMO |
Followed by 2023 USAJMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.