Difference between revisions of "1961 IMO Problems/Problem 2"
(→Solution) |
(→Solution 2 By PEKKA) |
||
Line 33: | Line 33: | ||
LHS-RHS=<math>2(x^2+y^2+z^2)-2(xy+xz+yz)=x^2-2xy+y^2+x^2-2x+z^2+y^2-2yz+z^2=(x-y)^2+(x-z)^2+(y-z)^2.</math> | LHS-RHS=<math>2(x^2+y^2+z^2)-2(xy+xz+yz)=x^2-2xy+y^2+x^2-2x+z^2+y^2-2yz+z^2=(x-y)^2+(x-z)^2+(y-z)^2.</math> | ||
<math>(x-y)^2+(x-z)^2+(y-z)^2 \ge 0</math> by the trivial inequality so therefore, <math>a^2 + b^2 + c^2 \ge 4S\sqrt{3}</math> and we're done. | <math>(x-y)^2+(x-z)^2+(y-z)^2 \ge 0</math> by the trivial inequality so therefore, <math>a^2 + b^2 + c^2 \ge 4S\sqrt{3}</math> and we're done. | ||
+ | {{IMO box|year=1961|num-b=1|num-a=3}} | ||
==Video Solution== | ==Video Solution== |
Revision as of 18:04, 1 August 2022
Problem
Let , , and be the lengths of a triangle whose area is S. Prove that
In what case does equality hold?
Solution
Substitute , where
This shows that the inequality is equivalent to .
This can be proven because . The equality holds when , or when the triangle is equilateral.
Solution 2 By PEKKA
We firstly use the duality principle. The LHS becomes and the RHS becomes If we use Heron's formula. By AM-GM Making this substitution becomes and once we take the square root of the area then our RHS becomes Multiplying the RHS and the LHS by 3 we get the LHS to be Our RHS becomes Subtracting we have the LHS equal to and the RHS being If LHS RHS then LHS-RHS LHS-RHS= by the trivial inequality so therefore, and we're done.
1961 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |
Video Solution
https://www.youtube.com/watch?v=ZYOB-KSEF3k&list=PLa8j0YHOYQQJGzkvK2Sm00zrh0aIQnof8&index=4 - AMBRIGGS