Difference between revisions of "Trivial Inequality"
(→Applications) |
(→Applications) |
||
Line 17: | Line 17: | ||
Suppose that <math>x</math> and <math>y</math> are nonnegative reals. By the trivial inequality, we have <math>(x-y)^2 \geq 0</math>, or <math>x^2-2xy+y^2 \geq 0</math>. Adding <math>4xy</math> to both sides, we get <math>x^2+2xy+y^2 = (x+y)^2 \geq 4xy</math>. Since both sides of the inequality are nonnegative, it is equivalent to <math>x+y \ge 2\sqrt{xy}</math>, and thus we have <cmath> \frac{x+y}{2} \geq \sqrt{xy}, </cmath> as desired. | Suppose that <math>x</math> and <math>y</math> are nonnegative reals. By the trivial inequality, we have <math>(x-y)^2 \geq 0</math>, or <math>x^2-2xy+y^2 \geq 0</math>. Adding <math>4xy</math> to both sides, we get <math>x^2+2xy+y^2 = (x+y)^2 \geq 4xy</math>. Since both sides of the inequality are nonnegative, it is equivalent to <math>x+y \ge 2\sqrt{xy}</math>, and thus we have <cmath> \frac{x+y}{2} \geq \sqrt{xy}, </cmath> as desired. | ||
− | Another application will be to minimize/maximize | + | Another application will be to minimize/maximize quadratics. For example, |
<cmath>ax^2+bx+c = a(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})+c-\frac{b^2}{4a} = a(x+\frac{b}{2a})^2+c-\frac{b^2}{4a}.</cmath> | <cmath>ax^2+bx+c = a(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})+c-\frac{b^2}{4a} = a(x+\frac{b}{2a})^2+c-\frac{b^2}{4a}.</cmath> |
Revision as of 00:22, 7 August 2022
The trivial inequality is an inequality that states that the square of any real number is nonnegative. Its name comes from its simplicity and straightforwardness.
Contents
[hide]Statement
For all real numbers ,
.
Proof
We can have either ,
, or
. If
, then
. If
, then
by the closure of the set of positive numbers under multiplication. Finally, if
, then
again by the closure of the set of positive numbers under multiplication.
Therefore, for all real
, as claimed.
Applications
The trivial inequality is one of the most commonly used theorems in mathematics. It is very well-known and does not require proof.
One application is maximizing and minimizing quadratic functions. It gives an easy proof of the two-variable case of the Arithmetic Mean-Geometric Mean inequality:
Suppose that and
are nonnegative reals. By the trivial inequality, we have
, or
. Adding
to both sides, we get
. Since both sides of the inequality are nonnegative, it is equivalent to
, and thus we have
as desired.
Another application will be to minimize/maximize quadratics. For example,
Then, we use trivial inequality to get if
is positive and
if
is negative.
Problems
Introductory
- Find all integer solutions
of the equation
.
- Show that
. Solution
- Show that
for all real
.
Intermediate
- Triangle
has
and
. What is the largest area that this triangle can have? (AIME 1992)
Olympiad
- Let
be the length of the hypotenuse of a right triangle whose two other sides have lengths
and
. Prove that
. When does the equality hold? (1969 Canadian MO)