Difference between revisions of "1978 AHSME Problems/Problem 29"
(→Solution) |
|||
Line 4: | Line 4: | ||
<math>\textbf{(A) }20\qquad \textbf{(B) }40\qquad \textbf{(C) }45\qquad \textbf{(D) }50\qquad \textbf{(E) }60</math> | <math>\textbf{(A) }20\qquad \textbf{(B) }40\qquad \textbf{(C) }45\qquad \textbf{(D) }50\qquad \textbf{(E) }60</math> | ||
==Solution== | ==Solution== | ||
− | + | ||
+ | Diagram: | ||
+ | |||
+ | Asymptote code below | ||
+ | [asy] | ||
+ | unitsize(1 cm); | ||
+ | |||
+ | pair[] A, B, C, D; | ||
+ | |||
+ | A[0] = (0,0); | ||
+ | B[0] = (0.6,1.2); | ||
+ | C[0] = (-0.3,2.5); | ||
+ | D[0] = (-1.5,0.7); | ||
+ | B[1] = interp(A[0],B[0],2); | ||
+ | C[1] = interp(B[0],C[0],2); | ||
+ | D[1] = interp(C[0],D[0],2); | ||
+ | A[1] = interp(D[0],A[0],2); | ||
+ | |||
+ | draw(A[1]--B[1]--C[1]--D[1]--cycle); | ||
+ | draw(A[0]--B[1]); | ||
+ | draw(B[0]--C[1]); | ||
+ | draw(C[0]--D[1]); | ||
+ | draw(D[0]--A[1]); | ||
+ | |||
+ | label("<math>A</math>", A[0], SW); | ||
+ | label("<math>B</math>", B[0], SE); | ||
+ | label("<math>C</math>", C[0], NE); | ||
+ | label("<math>D</math>", D[0], NW); | ||
+ | label("<math>A'</math>", A[1], SE); | ||
+ | label("<math>B'</math>", B[1], NE); | ||
+ | label("<math>C'</math>", C[1], N); | ||
+ | label("<math>D'</math>", D[1], SW); | ||
+ | [/asy] | ||
+ | |||
+ | Notice that the area of \triangle <math>DAB</math> is the same as that of \triangle <math>A'AB</math> (same base, same height). Thus, the area of \triangle <math>A'AB</math> is twice that (same height, twice the base). Similarly, [\triangle <math>BB'C</math>] = 2 \cdot [\triangle <math>ABC</math>], and so on. | ||
+ | |||
+ | Adding all of these, we see that the area the four triangles around <math>ABCD</math> is twice [\triangle <math>DAB</math>] + [\triangle <math>ABC</math>] + [\triangle <math>BCD</math>] + [\triangle <math>CDA</math>], which is itself twice the area of the quadrilateral <math>ABCD</math>. Finally, [<math>A'B'C'D'</math>] = [<math>ABCD</math>] + 4 \cdot [<math>ABCD</math>] = 5 \cdot [<math>ABCD</math>] = \fbox{50}. | ||
+ | |||
+ | ~ Mathavi |
Revision as of 12:59, 23 August 2022
Problem
Sides and , respectively, of convex quadrilateral are extended past and to points and . Also, and ; and the area of is . The area of is
Solution
Diagram:
Asymptote code below [asy] unitsize(1 cm);
pair[] A, B, C, D;
A[0] = (0,0); B[0] = (0.6,1.2); C[0] = (-0.3,2.5); D[0] = (-1.5,0.7); B[1] = interp(A[0],B[0],2); C[1] = interp(B[0],C[0],2); D[1] = interp(C[0],D[0],2); A[1] = interp(D[0],A[0],2);
draw(A[1]--B[1]--C[1]--D[1]--cycle); draw(A[0]--B[1]); draw(B[0]--C[1]); draw(C[0]--D[1]); draw(D[0]--A[1]);
label("", A[0], SW); label("", B[0], SE); label("", C[0], NE); label("", D[0], NW); label("", A[1], SE); label("", B[1], NE); label("", C[1], N); label("", D[1], SW); [/asy]
Notice that the area of \triangle is the same as that of \triangle (same base, same height). Thus, the area of \triangle is twice that (same height, twice the base). Similarly, [\triangle ] = 2 \cdot [\triangle ], and so on.
Adding all of these, we see that the area the four triangles around is twice [\triangle ] + [\triangle ] + [\triangle ] + [\triangle ], which is itself twice the area of the quadrilateral . Finally, [] = [] + 4 \cdot [] = 5 \cdot [] = \fbox{50}.
~ Mathavi