Difference between revisions of "2000 AMC 12 Problems/Problem 5"

m
(See also)
Line 15: Line 15:
  
 
== See also ==
 
== See also ==
* [[2000 AMC 12 Problems]]
+
{{AMC12 box|year=2000|num-b=4|num-a=6}}
*[[2000 AMC 12 Problems/Problem 4|Previous Problem]]
+
 
*[[2000 AMC 12 Problems/Problem 6|Next problem]]
 
 
* [[Absolute value]]
 
* [[Absolute value]]
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 13:22, 17 October 2007

Problem

If $\displaystyle |x - 2| = p,$ where $\displaystyle x < 2,$ then $\displaystyle x - p =$

$\mathrm{(A) \ -2 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 2-2p } \qquad \mathrm{(D) \ 2p-2 } \qquad \mathrm{(E) \ |2p-2| }$

Solution

When $\displaystyle x < 2,$, $x-2$ is negative so $|x - 2| = 2-x$ and $\displaystyle x - 2 = -p$.

Therefore:

$x=2-p$

$\displaystyle x-p = (2-p)-p = 2-2p \Longrightarrow \mathrm{(C)}$

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions