Difference between revisions of "2022 AMC 10B Problems/Problem 12"

(Video Solution 1)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6</math>
 
<math>\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6</math>
  
==Solution==
+
==Solution 1==
 
Rolling a pair of fair <math>6</math>-sided dice, the probability of getting a sum of <math>7</math> is <math>\frac16:</math> Regardless what the first die shows, the second die has exactly one outcome to make the sum <math>7.</math> We consider the complement: The probability of not getting a sum of <math>7</math> is <math>1-\frac16=\frac56.</math> Rolling the pair of dice <math>n</math> times, the probability of getting a sum of <math>7</math> at least once is <math>1-\left(\frac56\right)^n.</math>
 
Rolling a pair of fair <math>6</math>-sided dice, the probability of getting a sum of <math>7</math> is <math>\frac16:</math> Regardless what the first die shows, the second die has exactly one outcome to make the sum <math>7.</math> We consider the complement: The probability of not getting a sum of <math>7</math> is <math>1-\frac16=\frac56.</math> Rolling the pair of dice <math>n</math> times, the probability of getting a sum of <math>7</math> at least once is <math>1-\left(\frac56\right)^n.</math>
  

Revision as of 19:18, 11 January 2023

Problem

A pair of fair $6$-sided dice is rolled $n$ times. What is the least value of $n$ such that the probability that the sum of the numbers face up on a roll equals $7$ at least once is greater than $\frac{1}{2}$?

$\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6$

Solution 1

Rolling a pair of fair $6$-sided dice, the probability of getting a sum of $7$ is $\frac16:$ Regardless what the first die shows, the second die has exactly one outcome to make the sum $7.$ We consider the complement: The probability of not getting a sum of $7$ is $1-\frac16=\frac56.$ Rolling the pair of dice $n$ times, the probability of getting a sum of $7$ at least once is $1-\left(\frac56\right)^n.$

Therefore, we have $1-\left(\frac56\right)^n>\frac12,$ or \[\left(\frac56\right)^n<\frac12.\] Since $\left(\frac56\right)^4<\frac12<\left(\frac56\right)^3,$ the least integer $n$ satisfying the inequality is $\boxed{\textbf{(C) } 4}.$

~MRENTHUSIASM

Solution 2 (99% Accurate Guesswork)

Let's try the answer choices. We can quickly find that when we roll $3$ dice, either the first and second sum to $7$, the first and third sum to $7$, or the second and third sum to $7$. There are $6$ ways for the first and second dice to sum to $7$, $6$ ways for the first and third to sum to $7$, and $6$ ways for the second and third dice to sum to $7$. However, we overcounted (but not by much) so we can assume that the answer is $\boxed {\textbf{(C) }4}$

~Arcticturn

Video Solution 1

https://youtu.be/rYyb3NCWBXk

~Education, the Study of Everything

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png