Difference between revisions of "2021 Fall AMC 12A Problems/Problem 15"

(Problem 15)
m
Line 1: Line 1:
For a certain complex number <math>A,</math> the roots <math>z_1,</math> <math>z_2,</math> <math>z_3</math> of
+
==Problem 15==
<cmath>z^3 + Az^2 + (25 + 30i) z - 125i = 0</cmath>satisfy <math>|z_1| = |z_2| = |z_3|.</math> Find <math>A.</math>
+
Recall that the conjugate of the complex number <math>w = a + bi</math>, where <math>a</math> and <math>b</math> are real numbers and <math>i = \sqrt{-1}</math>, is the complex number <math>\overline{w} = a - bi</math>. For any complex number <math>z</math>, let <math>f(z) = 4i\hspace{1pt}\overline{z}</math>. The polynomial <cmath>P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1</cmath> has four complex roots: <math>z_1</math>, <math>z_2</math>, <math>z_3</math>, and <math>z_4</math>. Let <cmath>Q(z) = z^4 + Az^3 + Bz^2 + Cz + D</cmath> be the polynomial whose roots are <math>f(z_1)</math>, <math>f(z_2)</math>, <math>f(z_3)</math>, and <math>f(z_4)</math>, where the coefficients <math>A,</math> <math>B,</math> <math>C,</math> and <math>D</math> are complex numbers. What is <math>B + D?</math>
 +
 
 +
<math>(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304</math>
  
 
==Solution==
 
==Solution==

Revision as of 18:00, 24 May 2023

Problem 15

Recall that the conjugate of the complex number $w = a + bi$, where $a$ and $b$ are real numbers and $i = \sqrt{-1}$, is the complex number $\overline{w} = a - bi$. For any complex number $z$, let $f(z) = 4i\hspace{1pt}\overline{z}$. The polynomial \[P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1\] has four complex roots: $z_1$, $z_2$, $z_3$, and $z_4$. Let \[Q(z) = z^4 + Az^3 + Bz^2 + Cz + D\] be the polynomial whose roots are $f(z_1)$, $f(z_2)$, $f(z_3)$, and $f(z_4)$, where the coefficients $A,$ $B,$ $C,$ and $D$ are complex numbers. What is $B + D?$

$(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304$

Solution

By Vieta's formulas, $z_1z_2+z_1z_3+\dots+z_3z_4=3$, and $B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).$

Since $\overline{a}\cdot\overline{b}=\overline{ab},$ \[B=(4i)^2\left(\overline{z_1z_2}+\overline{z_1z_3}+\overline{z_1z_4}+\overline{z_2z_3}+\overline{z_2z_4}+\overline{z_3z_4}\right).\] Since $\overline{a}+\overline{b}=\overline{a+b},$ \[B=(4i)^2\left(\overline{z_1z_2+z_1z_3+\dots+z_3z_4}\right)=-16(\overline{3})=-48\]

Also, $z_1z_2z_3z_4=1,$ and \[D=(4i)^4\left(\overline{z}_1\,\overline{z}_2\,\overline{z}_3\,\overline{z}_4\right)=256\left(\overline{z_1z_2z_3z_4}\right)=256(\overline{1})=256.\]

Our answer is $B+D=256-48=\boxed{(\textbf{D}) \: 208}.$

~kingofpineapplz

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png