Difference between revisions of "2021 AMC 10A Problems/Problem 11"

(Video Solution by Omega Learn)
(Video Solution by TheBeautyofMath)
Line 46: Line 46:
 
~savannahsolver
 
~savannahsolver
  
==Video Solution by TheBeautyofMath==
+
==Video Solution==
 
https://youtu.be/t-EEP2V4nAE
 
https://youtu.be/t-EEP2V4nAE
  
 
~IceMatrix
 
~IceMatrix
 +
 +
==Video Solution ==
 +
https://youtu.be/CPYCUnL_Yc0
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021|ab=A|num-b=10|num-a=12}}
 
{{AMC10 box|year=2021|ab=A|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:28, 16 June 2023

Problem

For which of the following integers $b$ is the base-$b$ number $2021_b - 221_b$ not divisible by $3$?

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~4\qquad\textbf{(C)} ~6\qquad\textbf{(D)} ~7\qquad\textbf{(E)} ~8$

Solution 1 (Factor)

We have \begin{align*} 2021_b - 221_b &= (2021_b - 21_b) - (221_b - 21_b) \\ &= 2000_b - 200_b \\ &= 2b^3 - 2b^2 \\ &= 2b^2(b-1), \end{align*} which is divisible by $3$ unless $b\equiv2\pmod{3}.$ The only choice congruent to $2$ modulo $3$ is $\boxed{\textbf{(E)} ~8}.$

~MRENTHUSIASM

Solution 2 (Vertical Subtraction)

Vertically subtracting $2021_b - 221_b,$ we see that the ones place becomes $0,$ and so does the $b^1$ place. Then, we perform a carry (make sure the carry is in base $b$). Let $b-2 = A.$ Then, we have our final number as \[1A00_b.\] Now, when expanding, we see that this number is simply $b^3 - (b - 2)^2.$

Now, notice that the final number will only be congruent to \[b^3-(b-2)^2\equiv0\pmod{3}.\] If either $b\equiv0\pmod{3},$ or if $b\equiv1\pmod{3}$ (because note that $(b - 2)^2$ would become $\equiv1\pmod{3},$ and $b^3$ would become $\equiv1\pmod{3}$ as well, and therefore the final expression would become $1-1\equiv0\pmod{3}.$ Therefore, $b$ must be $\equiv2\pmod{3}.$ Among the answers, only $8$ is $\equiv2\pmod{3},$ and therefore our answer is $\boxed{\textbf{(E)} ~8}.$

~icecreamrolls8

Solution 3 (Answer Choices)

By the definition of bases, we have \[2021_b - 221_b = \left(2b^3+2b+1\right) - \left(2b^2+2b+1\right).\] For values $b_1$ and $b_2$ such that $b_1\equiv b_2\pmod{3},$ we get \[\left(2b_1^3+2b_1+1\right) - \left(2b_1^2+2b_1+1\right) \equiv \left(2b_2^3+2b_2+1\right) - \left(2b_2^2+2b_2+1\right) \pmod{3}.\] Note that answer choices $\textbf{(A)},\textbf{(B)},\textbf{(C)},\textbf{(D)},\textbf{(E)}$ are congruent to $0,1,0,1,2$ modulo $3,$ respectively. So, $\textbf{(A)}$ and $\textbf{(C)}$ are either both correct or both incorrect. Since there is only one correct answer, $\textbf{(A)}$ and $\textbf{(C)}$ are both incorrect. Similarly, $\textbf{(B)}$ and $\textbf{(D)}$ are both incorrect. This leaves us with $\boxed{\textbf{(E)} ~8},$ the answer choice with a unique residue modulo $3.$

~emerald_block ~MRENTHUSIASM

Video Solution (Simple and Quick)

https://youtu.be/1TZ1uI9z8fU

~ Education, the Study of Everything

Video Solution

https://www.youtube.com/watch?v=XBfRVYx64dA&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=10

~North America Math Contest Go Go Go

Video Solution

https://youtu.be/zYIuBXDhJJA

~savannahsolver

Video Solution

https://youtu.be/t-EEP2V4nAE

~IceMatrix

Video Solution

https://youtu.be/CPYCUnL_Yc0

~ pi_is_3.14

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png