Difference between revisions of "2022 AMC 10A Problems/Problem 8"
(→Solution (Casework)) |
m (→Problem) |
||
Line 3: | Line 3: | ||
==Problem== | ==Problem== | ||
− | A data set consists of <math>6</math> (not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is the sum of all | + | A data set consists of <math>6</math> (not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is the sum of all possible values of <math>X</math>? |
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math> | <math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math> |
Revision as of 01:08, 13 August 2023
- The following problem is from both the 2022 AMC 10A #8 and 2022 AMC 12A #6, so both problems redirect to this page.
Problem
A data set consists of (not distinct) positive integers: , , , , , and . The average (arithmetic mean) of the numbers equals a value in the data set. What is the sum of all possible values of ?
Solution (Casework)
First, note that . There are possible cases:
Case 1: the mean is .
.
Case 2: the mean is .
.
Case 3: the mean is .
.
Therefore, the answer is .
~MrThinker
Video Solution 1 (Quick and Simple)
~Education, the Study of Everything
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.