Difference between revisions of "1967 AHSME Problems/Problem 10"

(Solution)
(Undo Vandalism)
Line 1: Line 1:
 +
== Problem ==
 +
If <math>\frac{a}{10^x-1}+\frac{b}{10^x+2}=\frac{2 \cdot 10^x+3}{(10^x-1)(10^x+2)}</math> is an identity for positive rational values of <math>x</math>, then the value of <math>a-b</math> is:
  
 +
<math>\textbf{(A)}\ \frac{4}{3} \qquad
 +
\textbf{(B)}\ \frac{5}{3} \qquad
 +
\textbf{(C)}\ 2 \qquad
 +
\textbf{(D)}\ \frac{11}{4} \qquad
 +
\textbf{(E)}\ 3</math>
 +
 +
== Solution ==
 +
<math>\fbox{A}</math>
 +
 +
== See also ==
 +
{{AHSME 40p box|year=1967|num-b=9|num-a=11}} 
 +
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 00:42, 16 August 2023

Problem

If $\frac{a}{10^x-1}+\frac{b}{10^x+2}=\frac{2 \cdot 10^x+3}{(10^x-1)(10^x+2)}$ is an identity for positive rational values of $x$, then the value of $a-b$ is:

$\textbf{(A)}\ \frac{4}{3} \qquad \textbf{(B)}\ \frac{5}{3} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \frac{11}{4} \qquad \textbf{(E)}\ 3$

Solution

$\fbox{A}$

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png