Difference between revisions of "Mock AIME 4 2006-2007 Problems/Problem 10"
Line 32: | Line 32: | ||
<math>\sum_{k=0}^{3n} \begin{pmatrix} 3n \\ 3k \end{pmatrix}=\frac{2^{3n}+q(n)}{3}</math> | <math>\sum_{k=0}^{3n} \begin{pmatrix} 3n \\ 3k \end{pmatrix}=\frac{2^{3n}+q(n)}{3}</math> | ||
− | When <math>n</math> is odd, <math>3n</math> is odd, <math>2^{odd} \equiv (-1)^{odd}\;(mod\;3)\equiv | + | When <math>n</math> is odd, <math>3n</math> is odd, <math>2^{odd} \equiv (-1)^{odd}\;(mod\;3)\equiv -1\;(mod\;3)</math> |
When <math>n</math> is even, <math>3n</math> is even, <math>2^{even} \equiv (1)^{even}\;(mod\;3)\equiv 1\;(mod\;3)</math> | When <math>n</math> is even, <math>3n</math> is even, <math>2^{even} \equiv (1)^{even}\;(mod\;3)\equiv 1\;(mod\;3)</math> |
Revision as of 10:54, 25 November 2023
Contents
Problem
Compute the remainder when
is divided by 1000.
Solution
Let and be the two complex third-roots of 1. Then let
.
Now, if is a multiple of 3, . If is one more than a multiple of 3, . If is two more than a multiple of 3, . Thus
, which is exactly three times our desired expression.
We also have an alternative method for calculating : we know that , so . Note that these two numbers are both cube roots of -1, so .
Thus, the problem is reduced to calculating . , so we need to find and then use the Chinese Remainder Theorem. Since , by Euler's Totient Theorem . Combining, we have , and so .
Solution 2
, and
where is an integer that depends on the value of and will make the sum an integer.
When is odd, is odd,
When is even, is even,
See also
Mock AIME 4 2006-2007 (Problems, Source) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |