Difference between revisions of "2016 AIME II Problems/Problem 10"
m (→Solution 4) |
m (→Solution 2 (Projective Geometry)) |
||
Line 42: | Line 42: | ||
==Solution 2 (Projective Geometry)== | ==Solution 2 (Projective Geometry)== | ||
[[File:2016 AIME II 10c.png|400px|right]] | [[File:2016 AIME II 10c.png|400px|right]] | ||
− | Projecting through <math>C</math> we have <cmath>\frac{3}{4}\times \frac{13}{6}=(A,Q;P,B)\stackrel{C}{=}(A,T;S,B)=\frac{ST}{7}\times \frac{13}{5}</cmath> which easily gives <math>ST=\frac{35}{8}\Longrightarrow 35+8=\boxed{ | + | Projecting through <math>C</math> we have <cmath>\frac{3}{4}\times \frac{13}{6}=(A,Q;P,B)\stackrel{C}{=}(A,T;S,B)=\frac{ST}{7}\times \frac{13}{5}</cmath> which easily gives <math>ST=\frac{35}{8}\Longrightarrow 35+8=\boxed{043}</math>. |
==Solution 3== | ==Solution 3== |
Revision as of 22:09, 31 January 2024
Contents
[hide]Problem
Triangle is inscribed in circle
. Points
and
are on side
with
. Rays
and
meet
again at
and
(other than
), respectively. If
and
, then
, where
and
are relatively prime positive integers. Find
.
Solution 1
Let
,
, and
. Note that since
we have
, so by the Ratio Lemma
Similarly, we can deduce
and hence
.
Now Law of Sines on ,
, and
yields
Hence
so
Hence
and the requested answer is
.
Edit: Note that the finish is much simpler. Once you get , you can solve quickly from there getting
.
Solution 2 (Projective Geometry)
Projecting through we have
which easily gives
.
Solution 3
By Ptolemy's Theorem applied to quadrilateral , we find
Therefore, in order to find
, it suffices to find
. We do this using similar triangles, which can be found by using Power of a Point theorem.
As , we find
Therefore,
.
As , we find
Therefore,
.
As , we find
Therefore,
.
As , we find
Therefore,
. Thus we find
But now we can substitute in our previously found values for
and
, finding
Substituting this into our original expression from Ptolemy's Theorem, we find
Thus the answer is
.
Solution 4
Extend past
to point
so that
is cyclic. Then, by Power of a Point on
,
. By Power of a Point on
,
. Thus,
, so
.
By the Inscribed Angle Theorem on ,
. By the Inscribed Angle Theorem on
,
, so
. Since
is cyclic,
. Thus,
, so
. Solving for
yields
, for a final answer of
.
~ Leo.Euler
Solution 5 (5 = 2 + 3)
By Ptolemy's Theorem applied to quadrilateral , we find
Projecting through
we have
Therefore
vladimir.shelomovskii@gmail.com, vvsss
Solution 6
Connect and
So we need to get the ratio of
By clear observation , we have
, LOS tells
so we get
, the desired answer is
leads to
~blusoul
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.