Difference between revisions of "2024 AIME II Problems/Problem 10"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>\triangle ABC</math> have circumcenter <math>O</math> and incenter <math>I</math> with <math>\overline{IA}\perp\overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB\cdot AC</math>. | Let <math>\triangle ABC</math> have circumcenter <math>O</math> and incenter <math>I</math> with <math>\overline{IA}\perp\overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB\cdot AC</math>. | ||
+ | |||
+ | ==Solution 1 (Similar Triangles)== | ||
+ | |||
+ | |||
+ | <asy> | ||
+ | size(300); | ||
+ | import olympiad; | ||
+ | real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; | ||
+ | pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26); | ||
+ | pair A = (c/3,8.65*c/10); | ||
+ | draw(circumcircle(A,B,C)); | ||
+ | pair I=incenter(A,B,C); | ||
+ | pair O=circumcenter(A,B,C); | ||
+ | pair L=extension(A,I,C,B); | ||
+ | dot(I^^O^^A^^B^^C^^D^^L); | ||
+ | draw(A--L); | ||
+ | draw(A--D); | ||
+ | path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} | ||
+ | draw(C--B--D--cycle); | ||
+ | draw(A--C--B); | ||
+ | draw(A--B); | ||
+ | draw(B--I--C^^A--I); | ||
+ | draw(incircle(A,B,C)); | ||
+ | label("$B$",B,SW); | ||
+ | label("$C$",C,SE); | ||
+ | label("$A$",A,N); | ||
+ | label("$D$",D,S); | ||
+ | label("$I$",I,NW); | ||
+ | label("$L$",L,SW); | ||
+ | label("$O$",O,E); | ||
+ | label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); | ||
+ | label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); | ||
+ | label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8)); | ||
+ | label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8)); | ||
+ | label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); | ||
+ | label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8)); | ||
+ | |||
+ | draw(I--O); | ||
+ | draw(A--O); | ||
+ | draw(rightanglemark(A,I,O)); | ||
+ | </asy> | ||
+ | |||
+ | Solution in Progress | ||
+ | ~KingRavi | ||
==Solution== | ==Solution== |
Revision as of 01:09, 13 February 2024
Contents
[hide]Problem
Let have circumcenter and incenter with , circumradius , and inradius . Find .
Solution 1 (Similar Triangles)
Solution in Progress ~KingRavi
Solution
By Euler's formula , we have . Thus, by the Pythagorean theorem, . Let ; notice is isosceles and which is enough to imply that is the midpoint of , and itself is the midpoint of where is the -excenter of . Therefore, and
Note that this problem is extremely similar to 2019 CIME I/14.
Solution 2
Denote . By the given condition, , where is the area of .
Moreover, since , the second intersection of the line and is the reflection of about , denote that as . By the incenter-excenter lemma, .
Thus, we have . Now, we have
~Bluesoul
Solution 3
Denote by and the circumradius and inradius, respectively.
First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]
Second, because ,
Thus,
Taking , we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]
We have
Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]
Now, we analyze Equation (2). We have
Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]
Now, we compute . We have
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.