Difference between revisions of "1971 Canadian MO Problems/Problem 6"

m (Solution)
(Solutions)
Line 19: Line 19:
  
 
~ Nafer
 
~ Nafer
 +
 +
=== Solution 3 ===
 +
 +
In order for <math>121</math> to divide <math>n^{2} + 2n + 12</math>, <math>11</math> must also divide <math>n^{2} + 2n + 12</math>.
 +
 +
Plugging in all numbers modulo <math>11</math>:
 +
 +
<math>0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,</math>
 +
or <math>0, 1, 2, 3, 4, 5, (-5), (-4), (-3), (-2), (-1)</math> to make computations easier,
 +
 +
reveals that none of these numbers satisfy the condition <math>{n^{2} + 2n + 12} \equiv 0 \pmod{11}</math>.
 +
 +
Thus, there is no integer <math>n</math> such that <math>n^{2} + 2n + 12</math> is divisible by <math>121</math>.
 +
 +
~iamselfemployed
  
 
== See Also ==
 
== See Also ==
 
{{Old CanadaMO box|num-b=5|num-a=7|year=1971}}
 
{{Old CanadaMO box|num-b=5|num-a=7|year=1971}}
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]

Revision as of 14:53, 15 May 2024

Problem

Show that, for all integers $n$, $n^2+2n+12$ is not a multiple of $121$.

Solutions

Solution 1

Notice $n^{2} + 2n + 12 = (n+1)^{2} + 11$. For this expression to be equal to a multiple of 121, $(n+1)^{2} + 11$ would have to equal a number in the form $121x$. Now we have the equation $(n+1)^{2} + 11 = 121x$. Subtracting $11$ from both sides and then factoring out $11$ on the right hand side results in $(n+1)^{2} = 11(11x - 1)$. Now we can say $(n+1) = 11$ and $(n+1) = 11x - 1$. Solving the first equation results in $n=10$. Plugging in $n=10$ in the second equation and solving for $x$, $x = 12/11$. Since $12/11$ *$121$ is clearly not a multiple of 121, $n^{2} + 2n + 12$ can never be a multiple of 121.

Solution 2

Assume that $n^2+2n+12=121k$ for some integer $k$ then \[n^2+2n+(12-121k)=0\] \begin{align*} x&=\frac{-2\pm\sqrt{4-4(12-121k)}}{2} \\ &=\frac{-2\pm2\sqrt{484k-44}}{2} \\ &=\sqrt{11(11k-1)} \\ \end{align*} By the assumption that $n$ is an integer, $11k-1$ must has a factor of $11$, which is impossible, contradiction.

~ Nafer

Solution 3

In order for $121$ to divide $n^{2} + 2n + 12$, $11$ must also divide $n^{2} + 2n + 12$.

Plugging in all numbers modulo $11$:

$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,$ or $0, 1, 2, 3, 4, 5, (-5), (-4), (-3), (-2), (-1)$ to make computations easier,

reveals that none of these numbers satisfy the condition ${n^{2} + 2n + 12} \equiv 0 \pmod{11}$.

Thus, there is no integer $n$ such that $n^{2} + 2n + 12$ is divisible by $121$.

~iamselfemployed

See Also

1971 Canadian MO (Problems)
Preceded by
Problem 5
1 2 3 4 5 6 7 8 Followed by
Problem 7