Difference between revisions of "2002 AMC 10P Problems/Problem 14"

(Created page with "== Solution 1== == See also == {{AMC10 box|year=2002|ab=P|num-b=13|num-a=15}} {{MAA Notice}}")
 
Line 1: Line 1:
 +
== Problem 14 ==
 +
 +
The vertex <math>E</math> of a square <math>EFGH</math> is at the center of square <math>ABCD.</math> The length of a side of <math>ABCD</math> is <math>1</math> and the length of a side of <math>EFGH</math> is <math>2.</math> Side <math>EF</math> intersects <math>CD</math> at <math>I</math> and <math>EH</math> intersects <math>AD</math> at <math>J.</math> If angle <math>EID=60^{\circ},</math> the area of quadrilateral <math>EIDJ</math> is
 +
 +
<math>
 +
\text{(A) }\frac{1}{4}
 +
\qquad
 +
\text{(B) }\frac{\sqrt{3}}{6}
 +
\qquad
 +
\text{(C) }\frac{1}{3}
 +
\qquad
 +
\text{(D) }\frac{\sqrt{2}}{4}
 +
\qquad
 +
\text{(E) }\frac{\sqrt{3}}{2}
 +
</math>
 +
 
== Solution 1==
 
== Solution 1==
  

Revision as of 17:49, 14 July 2024

Problem 14

The vertex $E$ of a square $EFGH$ is at the center of square $ABCD.$ The length of a side of $ABCD$ is $1$ and the length of a side of $EFGH$ is $2.$ Side $EF$ intersects $CD$ at $I$ and $EH$ intersects $AD$ at $J.$ If angle $EID=60^{\circ},$ the area of quadrilateral $EIDJ$ is

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{\sqrt{3}}{6} \qquad \text{(C) }\frac{1}{3} \qquad \text{(D) }\frac{\sqrt{2}}{4} \qquad \text{(E) }\frac{\sqrt{3}}{2}$

Solution 1

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png