Difference between revisions of "1957 AHSME Problems/Problem 2"

(filled empty page)
(Solution)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math>
 
  
 +
Let the roots of the given equation be <math>r</math> and <math>s</math>. Then, by [[Vieta's Formulas]], we have the following:
 +
\begin{align*}
 +
\frac{h}{2} = r+s = 4 &\rightarrow h = 8 \\
 +
\frac{2k}{2} = rs = -3 &\rightarrow k = -3 \\
 +
\end{align*}
 +
 +
Thus, our answer is <math>\boxed{\textbf{(E) } 8 \text{ and } 3}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 11:05, 24 July 2024

Problem

In the equation $2x^2 - hx + 2k = 0$, the sum of the roots is $4$ and the product of the roots is $-3$. Then $h$ and $k$ have the values, respectively:

$\textbf{(A)}\ 8\text{ and }{-6} \qquad  \textbf{(B)}\ 4\text{ and }{-3}\qquad  \textbf{(C)}\ {-3}\text{ and }4\qquad \textbf{(D)}\ {-3}\text{ and }8\qquad \textbf{(E)}\ 8\text{ and }{-3}$

Solution

Let the roots of the given equation be $r$ and $s$. Then, by Vieta's Formulas, we have the following: \begin{align*} \frac{h}{2} = r+s = 4 &\rightarrow h = 8 \\ \frac{2k}{2} = rs = -3 &\rightarrow k = -3 \\ \end{align*}

Thus, our answer is $\boxed{\textbf{(E) } 8 \text{ and } 3}$.

See also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png