Difference between revisions of "2012 JBMO Problems/Problem 2"
(→Solution) |
|||
Line 42: | Line 42: | ||
Solution by Someonenumber011 :) | Solution by Someonenumber011 :) | ||
+ | |||
+ | The last paragraph is basically using the fact that <math>P</math> lies on the radical axis of <math>k_1</math> and <math>k_2</math>. | ||
{{JBMO box|year=2012|before=[[2011 JBMO]]|after=[[2013 JBMO]]}} | {{JBMO box|year=2012|before=[[2011 JBMO]]|after=[[2013 JBMO]]}} | ||
[[Category: JBMO]] | [[Category: JBMO]] |
Latest revision as of 19:36, 22 August 2024
Problem
Let the circles and intersect at two points and , and let be a common tangent of and that touches and at and respectively. If and , evaluate the angle .
Solution
Let and be the centers of circles and respectively. Also let be the intersection of and line .
Note that is perpendicular to since is a tangent of . In order for to be perpendicular to , must be the point diametrically opposite . Note that is a right angle since it inscribes a diameter. By AA similarity, . This gives that .
By Power of a Point on point with respect to circle , we have that . Using Power of a Point on point with respect to circle gives that . Therefore and . Since , . We now see that is a triangle. Since it is similar to , .
Solution by Someonenumber011 :)
The last paragraph is basically using the fact that lies on the radical axis of and .
2012 JBMO (Problems • Resources) | ||
Preceded by 2011 JBMO |
Followed by 2013 JBMO | |
1 • 2 • 3 • 4 • 5 | ||
All JBMO Problems and Solutions |