Difference between revisions of "2008 AMC 12A Problems/Problem 24"
m (typo) |
Chickendude (talk | contribs) (Added Solution - Need help on asymptote) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} - 3} \qquad \textbf{(E)}\ 1</math> | <math>\textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} - 3} \qquad \textbf{(E)}\ 1</math> | ||
− | ==Solution== | + | ==Solution== |
+ | <asy> | ||
+ | unitsize(12mm); | ||
+ | pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | ||
+ | pair E=(1,0), F=(2,0); | ||
+ | |||
+ | draw(C--B--A--C); | ||
+ | draw(A--D); | ||
+ | draw(D--E); | ||
+ | draw(B--F); | ||
+ | |||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | |||
+ | label("C",C,SW); | ||
+ | label("B",B,N); | ||
+ | label("A",A,SE); | ||
+ | label("D",D,NW); | ||
+ | label("E",E,S); | ||
+ | label("F",F,S); | ||
+ | label("<math>60^\circ</math>",C,NE); | ||
+ | label("2",1*dir(60),NW); | ||
+ | label("2",3*dir(60),NW); | ||
+ | label("<math>\theta</math>",(7,.4)); | ||
+ | label("1",(.5,0),S); | ||
+ | label("1",(1.5,0),S); | ||
+ | label("x-2",(5,0),S); | ||
+ | </asy> | ||
+ | |||
+ | |||
+ | |||
+ | Where <math>CA = x</math> | ||
+ | |||
+ | <math>\tan\theta = \tan(\angle BAF - \angle DAE)</math> | ||
+ | |||
+ | Since <math>\tan\angle BAF = \frac{2\sqrt{3}}{x-2}</math> and <math>\tan\angle DAE = \frac{\sqrt{3}}{x-1}</math>, we have | ||
+ | |||
+ | <math>\tan\theta = \frac{\frac{2\sqrt{3}}{x-2} - \frac{\sqrt{3}}{x-1}}{1 + \frac{2\sqrt{3}}{x-2}\cdot\frac{\sqrt{3}}{x-1}}</math> | ||
+ | |||
+ | Multiplying numerator and denominator by <math>(x-2)(x-1)</math> | ||
+ | |||
+ | <math>\tan\theta = \frac{x\sqrt{3}}{x^2-3x+8}</math> | ||
+ | |||
+ | If you know calculus, you can use that right here to max <math>\tan\theta</math>, but if you don't: | ||
+ | |||
+ | By AM-GM | ||
+ | |||
+ | <math>\frac{x + \frac{8}{x}}{2} \geq \sqrt{8}</math> | ||
+ | |||
+ | <math>x + \frac{8}{x} \geq 4\sqrt{2}</math> | ||
+ | |||
+ | <math>x + \frac{8}{x} -3 \geq 4\sqrt{2} - 3</math> | ||
+ | |||
+ | <math>\frac{x^2 - 3x + 8}{x} \geq 4\sqrt{2} - 3</math> | ||
+ | |||
+ | <math>\frac{x}{x^2 - 3x + 8} \leq \frac{1}{4\sqrt{2}-3}</math> | ||
+ | |||
+ | <math>\frac{x\sqrt{3}}{x^2 - 3x + 8} \leq \frac{\sqrt{3}}{4\sqrt{2}-3}</math> | ||
+ | |||
+ | <math>\tan\theta \leq \frac{\sqrt{3}}{4\sqrt{2}-3}</math> | ||
+ | |||
+ | Which means that the minimum is | ||
+ | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math> | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | {{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} |
Revision as of 11:05, 24 February 2008
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
unitsize(12mm); pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); pair E=(1,0), F=(2,0); draw(C--B--A--C); draw(A--D); draw(D--E); draw(B--F); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); label("C",C,SW); label("B",B,N); label("A",A,SE); label("D",D,NW); label("E",E,S); label("F",F,S); label("<math>60^\circ</math>",C,NE); label("2",1*dir(60),NW); label("2",3*dir(60),NW); label("<math>\theta</math>",(7,.4)); label("1",(.5,0),S); label("1",(1.5,0),S); label("x-2",(5,0),S); (Error making remote request. Unknown error_msg)
Where
Since and , we have
Multiplying numerator and denominator by
If you know calculus, you can use that right here to max , but if you don't:
By AM-GM
Which means that the minimum is
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |