|
|
Line 1: |
Line 1: |
− | {{WotWAnnounce|week=June 6-12}}
| + | #REDIRECT[[Angle Bisector Theorem]] |
− | | |
− | == Introduction & Formulas ==
| |
− | The '''Angle bisector theorem''' states that given [[triangle]] <math>\triangle ABC</math> and [[angle bisector]] AD, where D is on side BC, then <math> \frac cm = \frac bn </math>. It follows that <math> \frac cb = \frac mn </math>. Likewise, the [[converse]] of this theorem holds as well.
| |
− | | |
− | | |
− | Further by combining with [[Stewart's theorem]] it can be shown that <math>AD^2 = b\cdot c - m \cdot n</math>
| |
− | | |
− | <asy> size(200); defaultpen(fontsize(12)); real a,b,c,d; pair A=(1,9), B=(-11,0), C=(4,0), D; b = abs(C-A); c = abs(B-A); D = (b*B+c*C)/(b+c); draw(A--B--C--A--D,black); MA(B,A,D,2,green); MA(D,A,C,2,green); label("$A$",A,(1,1));label("$B$",B,(-1,-1));label("$C$",C,(1,-1));label("$D$",D,(0,-1)); dot(A^^B^^C^^D,blue);label("$b$",(A+C)/2,(1,0));label("$c$",(A+B)/2,(0,1));label("$m$",(B+D)/2,(0,-1));label("$n$",(D+C)/2,(0,-1)); </asy>
| |
− | | |
− | == Proof ==
| |
− | | |
− | By the [[Law of Sines]] on <math>\angle ACD</math> and <math>\angle ABD</math>,
| |
− | | |
− | <cmath>\begin{align*}\frac{AB}{BD}&=\frac{\sin(BDA)}{\sin(BAD)}\\
| |
− | \frac{AC}{CD}&=\frac{\sin(ADC)}{\sin(CAD)}\end{align*}</cmath>
| |
− | | |
− | First, because <math>\overline{AD}</math> is an angle bisector, we know that <math>m\angle BAD = m\angle CAD</math> and thus <math>\sin(BAD) = \sin(CAD)</math>, so the denominators are equal.
| |
− | | |
− | Second, we observe that <math>m\angle BDA + m\angle CDA = \pi</math> and <math>\sin(\pi - \theta) = \sin(\theta)</math>.
| |
− | Therefore, <math>\sin(BDA) = \sin(CDA)</math>, so the numerators are equal.
| |
− | | |
− | It then follows that <cmath>\frac{AB}{BD}=\frac{\sin(BDA)}{\sin(BAD)} = \frac{AC}{CD}</cmath>
| |
− | | |
− | == Examples & Problems ==
| |
− | | |
− | # Let ABC be a triangle with angle bisector AD with D on line segment BC. If <math> BD = 2, CD = 5,</math> and <math> AB + AC = 10 </math>, find AB and AC.<br> '''''Solution:''''' By the angle bisector theorem, <math> \frac{AB}2 = \frac{AC}5</math> or <math> AB = \frac 25 AC </math>. Plugging this into <math> AB + AC = 10 </math> and solving for AC gives <math> AC = \frac{50}7</math>. We can plug this back in to find <math> AB = \frac{20}7 </math>. | |
− | # In triangle ABC, let P be a point on BC and let <math> AB = 20, AC = 10, BP = \frac{20\sqrt{3}}3, CP = \frac{10\sqrt{3}}3 </math>. Find the value of <math> m\angle BAP - m\angle CAP </math>. <br> '''''Solution:''''' First, we notice that <math> \frac{AB}{BP}=\frac{AC}{CP} </math>. Thus, AP is the angle bisector of angle A, making our answer 0.
| |
− | # Part '''(b)''', [[1959 IMO Problems/Problem 5]].
| |
− | | |
− | == See also ==
| |
− | * [[Angle bisector]]
| |
− | * [[Geometry]]
| |
− | * [[Stewart's theorem]]
| |
− | | |
− | [[Category:Geometry]]
| |
− | | |
− | [[Category:Theorems]]
| |