Difference between revisions of "2024 AIME II Problems/Problem 11"
Nsking 1209 (talk | contribs) (→Solution 6 :) |
m (→Solution 2) |
||
Line 13: | Line 13: | ||
==Solution 2== | ==Solution 2== | ||
− | <math>a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000</math>, thus <math>a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000</math>. Complete the cube to get <math>-(a-100)^3-(b-100)^3 | + | <math>a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000</math>, thus <math>a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000</math>. Complete the cube to get <math>-(a-100)^3-(b-100)^3-(c-100)^3 = 9000000-30000(a+b+c)</math>, which so happens to be 0. Then we have <math>(a-100)^3+(b-100)^3+(c-100)^3 = 0</math>. We can use Fermat's last theorem here to note that one of <math>a, b, c</math> has to be 100. We have <math>200+200+200+1 = 601.</math> |
==Solution 3== | ==Solution 3== |
Latest revision as of 11:21, 12 December 2024
Contents
Problem
Find the number of triples of nonnegative integers satisfying and
Solution 1
Note that . Thus, . There are cases for each but we need to subtract for . The answer is
~Bluesoul,Shen Kislay Kai
Solution 2
, thus . Complete the cube to get , which so happens to be 0. Then we have . We can use Fermat's last theorem here to note that one of has to be 100. We have
Solution 3
We have \begin{align*} & a^2 b + a^2 c + b^2 a + b^2 c + c^2 a + c^2 b \\ & = ab \left( a + b \right) + bc \left( b + c \right) + ca \left( c + a \right) \\ & = ab \left( 300 - c \right) + bc \left( 300 - a \right) + ca \left( 300 - b \right) \\ & = 300 \left( ab + bc + ca \right) - 3 abc \\ & = -3 \left( \left( a - 100 \right) \left( b - 100 \right) \left( c - 100 \right) - 10^4 \left( a + b + c \right) + 10^6 \right) \\ & = -3 \left( \left( a - 100 \right) \left( b - 100 \right) \left( c - 100 \right) - 2 \cdot 10^6 \right) \\ & = 6 \cdot 10^6 . \end{align*} The first and the fifth equalities follow from the condition that .
Therefore,
Case 1: Exactly one out of , , is equal to 0.
Step 1: We choose which term is equal to 0. The number ways is 3.
Step 2: For the other two terms that are not 0, we count the number of feasible solutions.
W.L.O.G, we assume we choose in Step 1. In this step, we determine and .
Recall . Thus, . Because and are nonnegative integers and and , the number of solutions is 200.
Following from the rule of product, the number of solutions in this case is .
Case 2: At least two out of , , are equal to 0.
Because , we must have .
Therefore, the number of solutions in this case is 1.
Putting all cases together, the total number of solutions is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 4
We will use Vieta's formulas to solve this problem. We assume , , and . Thus , , are the three roots of a cubic polynomial .
We note that , which simplifies to .
Our polynomial is therefore equal to . Note that , and by polynomial division we obtain .
We now notice that the solutions to the quadratic equation above are , and that by changing the value of we can let the roots of the equation be any pair of two integers which sum to . Thus any triple in the form where is an integer between and satisfies the conditions.
Now to count the possible solutions, we note that when , the three roots are distinct; thus there are ways to order the three roots. As we can choose from to , there are triples in this case. When , all three roots are equal to , and there is only one triple in this case.
In total, there are thus distinct triples.
~GaloisTorrent <Shen Kislay Kai>
- minor edit made by MEPSPSPSOEODODODO
Solution 5
Let's define , , . Then we have and
, so we get . Then from , we can find , which means that one of , , must be 0. There are 201 solutions for each of , and , and subtract the overcounting of 2 for solution , the final result is .
~Dan Li
Solution 6
Since , . There is a well known algebraic identity known by those ineterested in Olympiad mathematics, which is :
If . Hence, as as mentioned above, .
Now expand the LHS of the equation : .
We are given in the problem that Notice that . This means that .
Simplify to get .
This means that .
We know that . We also know that .
Now the LHS can be written as . This simplifies to .
Now, we evaluate the right side. . Now we set the LHS and RHS equal to each other.
. Notice that the LHS is just times the RHS. If the RHS is equal to times itself, the only possible value the RHS can take is . The RHS was originally . This must equal . . This means one of or must be . The remaining two must sum up to as the three of them together sum to as indicated by the problem. WLOG Let us assume and . As and are nonnegative integers, we employ Stars and Bars to find that there are solutions to the equation. As or could in reality be , multiply by to get . However, the solution is counted thrice in total, but we only want it counted once, so subtract from to arrive at the final answer : The number of solutions is .
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.