Difference between revisions of "2024 AMC 12B Problems/Problem 19"

m (Solution #2)
m (Solution #2)
 
Line 41: Line 41:
 
The answer would be <math>3([\triangle FOC] + [\triangle COE])</math>
 
The answer would be <math>3([\triangle FOC] + [\triangle COE])</math>
  
Which area <math>\triangle FOC</math> = <math>0.5\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math>
+
Which area <math>\triangle FOC</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math>
  
And area <math>\triangle COE</math> = <math>0.5\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math>
+
And area <math>\triangle COE</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math>
  
 
So we have that  
 
So we have that  

Latest revision as of 14:42, 15 December 2024

Problem 19

Equilateral $\triangle ABC$ with side length $14$ is rotated about its center by angle $\theta$, where $0 < \theta < 60^{\circ}$, to form $\triangle DEF$. See the figure. The area of hexagon $ADBECF$ is $91\sqrt{3}$. What is $\tan\theta$? [asy] // Credit to shihan for this diagram.  defaultpen(fontsize(13)); size(200); pair O=(0,0),A=dir(225),B=dir(-15),C=dir(105),D=rotate(38.21,O)*A,E=rotate(38.21,O)*B,F=rotate(38.21,O)*C; draw(A--B--C--A,gray+0.4);draw(D--E--F--D,gray+0.4); draw(A--D--B--E--C--F--A,black+0.9); dot(O); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$E$",E,dir(E)); dot("$F$",F,dir(F)); [/asy]

$\textbf{(A)}~\frac{3}{4}\qquad\textbf{(B)}~\frac{5\sqrt{3}}{11}\qquad\textbf{(C)}~\frac{4}{5}\qquad\textbf{(D)}~\frac{11}{13}\qquad\textbf{(E)}~\frac{7\sqrt{3}}{13}$

Solution 1

Let O be circumcenter of the equilateral triangle

Easily get $OF = \frac{14\sqrt{3}}{3}$

$2 \cdot \triangle(OFC) + \triangle(OCE) =  OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)$ \[= \frac{14^2 \cdot 3}{9} (   \sin(\theta)  +  \sin(120 - \theta) )\] \[= \frac{196}{3}  (   \sin(\theta)  +  \sin(120 - \theta) )\] \[= 2 \cdot {\frac{1}{3}  } \cdot(ABCDEF) = 2\cdot \frac{91\sqrt{3}}{3}\]

\[\sin(\theta)  +  \sin(120 - \theta) = \frac{13\sqrt{3}}{14}\] \[\sin(\theta)  +   \frac{ \sqrt{3}}{2}\cos(  \theta) +\frac{ \sqrt{1}}{2}\sin(  \theta) = \frac{13\sqrt{3}}{14}\] \[\sqrt{3} \sin(  \theta) + \cos(  \theta) = \frac{13 }{7}\] \[\cos(  \theta)  = \frac{13 }{7}  - \sqrt{3} \sin(  \theta)\] \[\frac{169 }{49}  - \frac{26\sqrt{3} }{7} \sin(  \theta)  + 4 \sin(  \theta)^2 = 1\] \[\sin(  \theta)  = \frac{5\sqrt{3} }{14}  or \frac{4\sqrt{3} }{7}\] $\frac{4\sqrt{3} }{7}$ is invalid given $\theta \leq 60^\circ$ , $\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7}$ \[\cos(  \theta)  = \frac{11 }{14}\] \[\tan(  \theta)  = \frac{5\sqrt{3} }{11} \boxed{B }\]

~luckuso

Solution #2

From $\triangle ABC$'s side lengths of 14, we get \[OF = OC = OE = \frac{14\sqrt{3}}{3}.\] We let $\angle FOC = \theta$ And $\angle EOC = 120 - \theta$

The answer would be $3([\triangle FOC] + [\triangle COE])$

Which area $\triangle FOC$ = $\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)$

And area $\triangle COE$ = $\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)$

So we have that \[3\cdot \frac{1}{2}\cdot \left(\frac{14\sqrt{3}}{3}\right)^2 (\sin(\theta)+\sin(120 - \theta)) = 91\sqrt{3}\]

Which means \[\sin(\theta)+\sin(120 - \theta) = \frac{91\sqrt{3}}{98}\] \[\frac{1}{2}\cos(\theta)+\frac{\sqrt{3}}{2}\sin(\theta) = \frac{91}{98}\] \[\sin(\theta + 30) = \frac{91}{98}\] \[\cos (\theta + 30) = \frac{21\sqrt{3}}{98}\] \[\tan(\theta + 30) = \frac{91}{21\sqrt{3}} = \frac{91\sqrt{3}}{63}\]

Now, $\tan(\theta)$ can be calculated using the addition identity, which gives the answer of

\[\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}.\]

~mitsuihisashi14 ~luckuso (fixed Latex error )

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=akLlCXKtXnk

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png