Difference between revisions of "2008 AMC 12B Problems/Problem 25"

Line 2: Line 2:
 
Let <math>ABCD</math> be a trapezoid with <math>AB||CD, AB=11, BC=5, CD=19,</math> and <math>DA=7</math>. Bisectors of <math>\angle A</math> and <math>\angle D</math> meet at <math>P</math>, and bisectors of <math>\angle B</math> and <math>\angle C</math> meet at <math>Q</math>. What is the area of hexagon <math>ABQCDP</math>?
 
Let <math>ABCD</math> be a trapezoid with <math>AB||CD, AB=11, BC=5, CD=19,</math> and <math>DA=7</math>. Bisectors of <math>\angle A</math> and <math>\angle D</math> meet at <math>P</math>, and bisectors of <math>\angle B</math> and <math>\angle C</math> meet at <math>Q</math>. What is the area of hexagon <math>ABQCDP</math>?
  
<math>\textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3\qquad \textbf{(D)}\ 35\qrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}</math>
+
<math>\textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3}\qquad \textbf{(D)}\ 35\sqrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}</math>
  
 
==Solution==
 
==Solution==
  
 
==See Also==
 
==See Also==
{{AMC12 box|year=2008|ab=B|num-b=22|num-a=24}}
+
{{AMC12 box|year=2008|ab=B|num-b=24|after=Last Question}}

Revision as of 16:09, 2 March 2008

Problem 25

Let $ABCD$ be a trapezoid with $AB||CD, AB=11, BC=5, CD=19,$ and $DA=7$. Bisectors of $\angle A$ and $\angle D$ meet at $P$, and bisectors of $\angle B$ and $\angle C$ meet at $Q$. What is the area of hexagon $ABQCDP$?

$\textbf{(A)}\ 28\sqrt{3}\qquad \textbf{(B)}\ 30\sqrt{3}\qquad \textbf{(C)}\ 32\sqrt{3}\qquad \textbf{(D)}\ 35\sqrt{3}\qquad \textbf{(E)}\ 36\sqrt{3}$

Solution

See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions