Difference between revisions of "Binomial Theorem"

m
Line 1: Line 1:
 
==The Theorem==
 
==The Theorem==
First discovered by [[Isaac Newton]], the '''Binomial Theorem''' states that for [[real number | real]] or [[complex number |complex]] ''a'',''b'',<br><math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>.  
+
First discovered by [[Isaac Newton]], the '''Binomial Theorem''' states that for [[real number | real]] or [[complex number |complex]] ''a'',''b'',<br><math>(a+b)^n = \sum_{k=0}^{n}{\binom{n}{k}}\cdot a^k\cdot b^{n-k}</math>.  
  
 
This may be easily shown for the [[integer]]s:<br>
 
This may be easily shown for the [[integer]]s:<br>
 
<math>(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>.
 
<math>(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>.
<br>Repeatedly using the [[distributive property]], we see that for a term <math>a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>a^m b^{n-m}</math> is <math>n \choose m</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>.
+
<br>Repeatedly using the [[distributive property]], we see that for a term <math>a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>a^m b^{n-m}</math> is <math>\binom{m}{n}</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{k=0}^{n}{\binom{n}{k}}\cdot a^k\cdot b^{n-k}</math>.
  
 
==Usage==
 
==Usage==

Revision as of 19:02, 11 March 2008

The Theorem

First discovered by Isaac Newton, the Binomial Theorem states that for real or complex a,b,
$(a+b)^n = \sum_{k=0}^{n}{\binom{n}{k}}\cdot a^k\cdot b^{n-k}$.

This may be easily shown for the integers:
$(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}$.
Repeatedly using the distributive property, we see that for a term $a^m b^{n-m}$, we must choose $m$ of the $n$ terms to contribute an $a$ to the term, and then each of the other $n-m$ terms of the product must contribute a $b$. Thus, the coefficient of $a^m b^{n-m}$ is $\binom{m}{n}$. Extending this to all possible values of $m$ from $0$ to $n$, we see that $(a+b)^n = \sum_{k=0}^{n}{\binom{n}{k}}\cdot a^k\cdot b^{n-k}$.

Usage

Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial $x^5+4x^4+6x^3+4x^2+x$, one could factor it as such: $x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}$. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.

See also