Difference between revisions of "2007 USAMO Problems/Problem 1"
Mathcrazed (talk | contribs) (→Solution 3) |
Mathcrazed (talk | contribs) (→Solution 3) |
||
Line 27: | Line 27: | ||
=== Solution 3 === | === Solution 3 === | ||
Let <math>a_1=n</math>. Since <math>a_k\le k-1</math>, we have that <math>a_1+a_2+a_3+\hdots+a_n\le n+1+2+\hdots+n-1</math>. | Let <math>a_1=n</math>. Since <math>a_k\le k-1</math>, we have that <math>a_1+a_2+a_3+\hdots+a_n\le n+1+2+\hdots+n-1</math>. | ||
+ | |||
Thus, <math>a_1+a_2+\hdots+a_n\le \frac{n(n+1)}{2}</math>. | Thus, <math>a_1+a_2+\hdots+a_n\le \frac{n(n+1)}{2}</math>. | ||
+ | |||
Since <math>a_1+a_2+\hdots+a_n=nk</math>, for some integer <math>k</math>, we can keep adding <math>k</math> to satisfy the conditions, provided that <math>k\le n</math> because <math>a_n+1\le n</math>. | Since <math>a_1+a_2+\hdots+a_n=nk</math>, for some integer <math>k</math>, we can keep adding <math>k</math> to satisfy the conditions, provided that <math>k\le n</math> because <math>a_n+1\le n</math>. | ||
Revision as of 10:12, 1 April 2008
Problem
Let be a positive integer. Define a sequence by setting
and, for each
, letting
be the unique integer in the range
for which
is divisible by
. For instance, when
the obtained sequence is
. Prove that for any
the sequence
eventually becomes constant.
Solution
Solution 1
Define , and
. If
, then for
,
. Note that
is a permissible value of
since
: if we substitute
for
, we get
, the unique value for
. So
, from which if follows that the
s become constant.
Now we must show that eventually . Suppose that
for all
. By definition,
, so
. Also, for
, each
so


But is constant while
is increasing, so eventually we will have a contradiction and
. Therefore, the sequence of
s will become constant.
Solution 2
By the above, we have that

, and by definition,
. Thus,
. Also, both
are integers, so
. As the
s form a non-increasing sequence of positive integers, they must eventually become constant.
Therefore, for some sufficiently large value of
. Then
, so eventually the sequence
becomes constant.
Solution 3
Let . Since
, we have that
.
Thus, .
Since , for some integer
, we can keep adding
to satisfy the conditions, provided that
because
.
Because , the sequence must eventually become constant.
See also
2007 USAMO (Problems • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |