Difference between revisions of "2002 AIME II Problems/Problem 13"
I like pie (talk | contribs) m |
|||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 32,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 32,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
Line 5: | Line 4: | ||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} | ||
+ | |||
== See also == | == See also == | ||
− | + | {{AIME box|year=2002|n=II|num-b=12|num-a=14}} | |
− | |||
− |
Revision as of 12:32, 19 April 2008
Problem
In triangle point is on with and point is on with and and and intersect at Points and lie on so that is parallel to and is parallel to It is given that the ratio of the area of triangle to the area of triangle is where and are relatively prime positive integers. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |