Difference between revisions of "2008 AMC 12A Problems/Problem 24"
(wik.cat) |
I like pie (talk | contribs) (Standardized answer choices) |
||
Line 2: | Line 2: | ||
[[Triangle]] <math>ABC</math> has <math>\angle C = 60^{\circ}</math> and <math>BC = 4</math>. Point <math>D</math> is the [[midpoint]] of <math>BC</math>. What is the largest possible value of <math>\tan{\angle BAD}</math>? | [[Triangle]] <math>ABC</math> has <math>\angle C = 60^{\circ}</math> and <math>BC = 4</math>. Point <math>D</math> is the [[midpoint]] of <math>BC</math>. What is the largest possible value of <math>\tan{\angle BAD}</math>? | ||
− | <math>\ | + | <math>\mathrm{(A)}\ \frac{\sqrt{3}}{6}\qquad\mathrm{(B)}\ \frac{\sqrt{3}}{3}\qquad\mathrm{(C)}\ \frac{\sqrt{3}}{2\sqrt{2}}\qquad\mathrm{(D)}\ \frac{\sqrt{3}}{4\sqrt{2}-3}\qquad\mathrm{(E)}\ 1</math> |
==Solution== | ==Solution== | ||
− | + | <asy>unitsize(12mm); | |
− | unitsize(12mm); | ||
pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | ||
pair E=(1,0), F=(2,0); | pair E=(1,0), F=(2,0); | ||
Line 24: | Line 23: | ||
label("\(1\)",(.5,0),S); | label("\(1\)",(.5,0),S); | ||
label("\(1\)",(1.5,0),S); | label("\(1\)",(1.5,0),S); | ||
− | label("\(x-2\)",(5,0),S); | + | label("\(x-2\)",(5,0),S);</asy> |
− | </asy | ||
Let <math>x = CA</math>. Then <math>\tan\theta = \tan(\angle BAF - \angle DAE)</math>, and since <math>\tan\angle BAF = \frac{2\sqrt{3}}{x-2}</math> and <math>\tan\angle DAE = \frac{\sqrt{3}}{x-1}</math>, we have | Let <math>x = CA</math>. Then <math>\tan\theta = \tan(\angle BAF - \angle DAE)</math>, and since <math>\tan\angle BAF = \frac{2\sqrt{3}}{x-2}</math> and <math>\tan\angle DAE = \frac{\sqrt{3}}{x-1}</math>, we have |
Revision as of 00:59, 26 April 2008
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
Let . Then , and since and , we have
With calculus, taking the derivative and setting equal to zero will give the maximum value of . Otherwise, we can apply AM-GM:
Thus, the minimum is at .
See also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |