Difference between revisions of "1994 AIME Problems/Problem 5"

m
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Note that <math>p(1)=p(11), p(2)=p(12), p(3)=p(13), \cdots p(19)=p(9)</math>, and <math>p(37)=3p(7)</math>. So <math>p(10)+p(11)+p(12)+\cdots +p(19)=46</math>, <math>p(10)+p(11)+\cdots +p(99)=46*45=2070</math>. We add <math>p(1)+p(2)+p(3)+\cdots +p(10)=45</math> to get 2115. When we add a digit we multiply the sum by that digit. Thus <math>S=2115\cdot (1+1+2+3+4+5+6+7+8+9)=2115\cdot 46=47\cdot 45\cdot 46</math>. The largest prime factor of that is <math>\boxed{47}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1994|num-b=4|num-a=6}}
 
{{AIME box|year=1994|num-b=4|num-a=6}}
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 13:17, 6 May 2008

Problem

Given a positive integer $n\,$, let $p(n)\,$ be the product of the non-zero digits of $n\,$. (If $n\,$ has only one digits, then $p(n)\,$ is equal to that digit.) Let

$S=p(1)+p(2)+p(3)+\cdots+p(999)$

.

What is the largest prime factor of $S\,$?

Solution

Note that $p(1)=p(11), p(2)=p(12), p(3)=p(13), \cdots p(19)=p(9)$, and $p(37)=3p(7)$. So $p(10)+p(11)+p(12)+\cdots +p(19)=46$, $p(10)+p(11)+\cdots +p(99)=46*45=2070$. We add $p(1)+p(2)+p(3)+\cdots +p(10)=45$ to get 2115. When we add a digit we multiply the sum by that digit. Thus $S=2115\cdot (1+1+2+3+4+5+6+7+8+9)=2115\cdot 46=47\cdot 45\cdot 46$. The largest prime factor of that is $\boxed{47}$.

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions