Difference between revisions of "2003 AIME I Problems/Problem 12"
m |
({{img}}) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. | + | {{image}} |
− | < | + | <!-- |
+ | <center><asy> | ||
+ | pair A=(0,0),B=(1.8,0); | ||
+ | </asy></center>--> | ||
+ | |||
+ | Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. By the [[Law of Cosines]] in <math>\triangle ABD</math> at angle <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>, | ||
+ | <cmath>180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = BD^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A.</cmath> Then | ||
<math>x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A</math> and grouping the <math>\cos A</math> terms gives | <math>x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A</math> and grouping the <math>\cos A</math> terms gives | ||
<math>360(280 - 2x)\cos A = 280(280 - 2x)</math>. | <math>360(280 - 2x)\cos A = 280(280 - 2x)</math>. | ||
Since <math>x \neq 280 - x</math>, <math>280 - 2x \neq 0</math> and thus | Since <math>x \neq 280 - x</math>, <math>280 - 2x \neq 0</math> and thus | ||
− | <math>360\cos A = 280</math> so <math>\cos A = \frac{7}{9} = 0.7777\ldots</math> and so <math>\lfloor 1000\cos A\rfloor = 777</math>. | + | <math>360\cos A = 280</math> so <math>\cos A = \frac{7}{9} = 0.7777\ldots</math> and so <math>\lfloor 1000\cos A\rfloor = \boxed{777}</math>. |
== See also == | == See also == | ||
− | + | {{AIME box|year=2003|n=I|num-b=11|num-a=13}} | |
− | |||
− | |||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 15:46, 10 June 2008
Problem
In convex quadrilateral and The perimeter of is 640. Find (The notation means the greatest integer that is less than or equal to )
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Let so . By the Law of Cosines in at angle and in at angle , Then and grouping the terms gives .
Since , and thus so and so .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |