Difference between revisions of "1987 AIME Problems/Problem 11"

(Solution)
(Solution)
Line 6: Line 6:
 
<math>3^{11} = (n + 1) + (n + 2) + \ldots + (n + m) = \frac{1}{2} m(2n + m + 1)</math>.
 
<math>3^{11} = (n + 1) + (n + 2) + \ldots + (n + m) = \frac{1}{2} m(2n + m + 1)</math>.
  
Thus <math>m(2n + m + 1) = 2 \cdot 3^{11}</math> so <math>m</math> is a [[divisor]] of <math>2\cdot 3^{11}</math>.  However, because <math>n \geq 0</math> we have <math>m^2 < m(m + 1) \leq 2\cdot 3^{11}</math> so <math>m < \sqrt{2\cdot 3^{11}} < 3^6</math>.  Thus, we are looking for large factors of <math>2\cdot 3^{11}</math> which are less than <math>3^6</math>.  The largest such factor is clearly <math>2\cdot 3^5 = 486</math>; for this value of <math>m</math> we do indeed have the valid [[expression]] <math>3^{11} = 122 + 123 + \ldots + 607</math>, which <math>k=496</math>.
+
Thus <math>m(2n + m + 1) = 2 \cdot 3^{11}</math> so <math>m</math> is a [[divisor]] of <math>2\cdot 3^{11}</math>.  However, because <math>n \geq 0</math> we have <math>m^2 < m(m + 1) \leq 2\cdot 3^{11}</math> so <math>m < \sqrt{2\cdot 3^{11}} < 3^6</math>.  Thus, we are looking for large factors of <math>2\cdot 3^{11}</math> which are less than <math>3^6</math>.  The largest such factor is clearly <math>2\cdot 3^5 = 486</math>; for this value of <math>m</math> we do indeed have the valid [[expression]] <math>3^{11} = 122 + 123 + \ldots + 607</math>, for which <math>k=\boxed{486}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1987|num-b=10|num-a=12}}
 
{{AIME box|year=1987|num-b=10|num-a=12}}
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Number Theory Problems]]

Revision as of 21:53, 21 July 2008

Problem

Find the largest possible value of $\displaystyle k$ for which $\displaystyle 3^{11}$ is expressible as the sum of $\displaystyle k$ consecutive positive integers.

Solution

Let us write down one such sum, with $m$ terms and first term $n + 1$:

$3^{11} = (n + 1) + (n + 2) + \ldots + (n + m) = \frac{1}{2} m(2n + m + 1)$.

Thus $m(2n + m + 1) = 2 \cdot 3^{11}$ so $m$ is a divisor of $2\cdot 3^{11}$. However, because $n \geq 0$ we have $m^2 < m(m + 1) \leq 2\cdot 3^{11}$ so $m < \sqrt{2\cdot 3^{11}} < 3^6$. Thus, we are looking for large factors of $2\cdot 3^{11}$ which are less than $3^6$. The largest such factor is clearly $2\cdot 3^5 = 486$; for this value of $m$ we do indeed have the valid expression $3^{11} = 122 + 123 + \ldots + 607$, for which $k=\boxed{486}$.

See also

1987 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions