Difference between revisions of "2000 AMC 10 Problems/Problem 20"
5849206328x (talk | contribs) (New page: ==Problem== ==Solution== ==See Also== {{AMC10 box|year=2000|num-b=19|num-a=21}}) |
5849206328x (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | |||
+ | Let <math>A</math>, <math>M</math>, and <math>C</math> be nonnegative integers such that <math>A+M+C=10</math>. What is the maximum value of <math>A\cdot M\cdot C+A\cdot M+M\cdot C+C\cdot A</math>? | ||
+ | |||
+ | <math>\mathrm{(A)}\ 49 \qquad\mathrm{(B)}\ 59 \qquad\mathrm{(C)}\ 69 \qquad\mathrm{(D)}\ 79 \qquad\mathrm{(E)}\ 89</math> | ||
==Solution== | ==Solution== |
Revision as of 10:46, 11 January 2009
Problem
Let , , and be nonnegative integers such that . What is the maximum value of ?
Solution
See Also
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |