Difference between revisions of "2000 AMC 10 Problems/Problem 20"

(New page: ==Problem== ==Solution== ==See Also== {{AMC10 box|year=2000|num-b=19|num-a=21}})
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 +
Let <math>A</math>, <math>M</math>, and <math>C</math> be nonnegative integers such that <math>A+M+C=10</math>.  What is the maximum value of <math>A\cdot M\cdot C+A\cdot M+M\cdot C+C\cdot A</math>?
 +
 +
<math>\mathrm{(A)}\ 49 \qquad\mathrm{(B)}\ 59 \qquad\mathrm{(C)}\ 69 \qquad\mathrm{(D)}\ 79 \qquad\mathrm{(E)}\ 89</math>
  
 
==Solution==
 
==Solution==

Revision as of 10:46, 11 January 2009

Problem

Let $A$, $M$, and $C$ be nonnegative integers such that $A+M+C=10$. What is the maximum value of $A\cdot M\cdot C+A\cdot M+M\cdot C+C\cdot A$?

$\mathrm{(A)}\ 49 \qquad\mathrm{(B)}\ 59 \qquad\mathrm{(C)}\ 69 \qquad\mathrm{(D)}\ 79 \qquad\mathrm{(E)}\ 89$

Solution

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions