Difference between revisions of "1986 AJHSME Problems"

(Problem 15)
(Problem 16)
Line 154: Line 154:
  
 
== Problem 16 ==
 
== Problem 16 ==
 +
 +
A bar graph shows the number of hamburgers sold by a fast food chain each season.  However, the bar indicating the number sold during the winter is covered by a smudge.  If exactly <math>25\% </math> of the chain's hamburgers are sold in the fall, how many million hamburgers are sold in the winter?
 +
 +
<asy>
 +
size(250);
 +
 +
void bargraph(real X, real Y, real ymin, real ymax, real ystep, real tickwidth,
 +
string yformat, Label LX, Label LY, Label[] LLX, real[] height,pen p=nullpen)
 +
{
 +
draw((0,0)--(0,Y),EndArrow);
 +
draw((0,0)--(X,0),EndArrow);
 +
label(LX,(X,0),plain.SE,fontsize(9));
 +
label(LY,(0,Y),plain.NW,fontsize(9));
 +
real yscale=Y/(ymax+ystep);
 +
 +
for(real y=ymin; y<ymax; y+=ystep)
 +
{
 +
draw((-tickwidth,yscale*y)--(0,yscale*y));
 +
label(format(yformat,y),(-tickwidth,yscale*y),plain.W,fontsize(9));
 +
}
 +
 +
int n=LLX.length;
 +
real xscale=X/(2*n+2);
 +
for(int i=0;i<n;++i)
 +
{
 +
real x=xscale*(2*i+1);
 +
path P=(x,0)--(x,height[i]*yscale)--(x+xscale,height[i]*yscale)--(x+xscale,0)--cycle;
 +
fill(P,p);
 +
draw(P);
 +
label(LLX[i],(x+xscale/2),plain.S,fontsize(10));
 +
}
 +
for(int i=0;i<n;++i) draw((0,height[i]*yscale)--(X,height[i]*yscale),dashed);
 +
}
 +
 +
string yf="%#.1f";
 +
Label[] LX={"Spring","Summer","Fall","Winter"};
 +
for(int i=0;i<LX.length;++i) LX[i]=rotate(90)*LX[i];
 +
real[] H={4.5,5,4,4};
 +
 +
bargraph(60,50,1,5.1,0.5,2,yf,"season","hamburgers (millions)",LX,H,yellow);
 +
fill(ellipse((45,30),7,10),brown);
 +
</asy>
 +
 +
<math>\text{(A)}\ 2.5 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 3.5 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 4.5</math>
  
 
[[1986 AJHSME Problems/Problem 16|Solution]]
 
[[1986 AJHSME Problems/Problem 16|Solution]]

Revision as of 18:03, 20 January 2009

Problem 1

In July 1861, $366$ inches of rain fell in Cherrapunji, India. What was the average rainfall in inches per hour during that month?

$\text{(A)}\ \frac{366}{31\times 24}$

$\text{(B)}\ \frac{366\times 31}{24}$

$\text{(C)}\ \frac{366\times 24}{31}$

$\text{(D)}\ \frac{31\times 24}{366}$

$\text{(E)}\  366\times 31\times 24$

Solution

Problem 2

Which of the following numbers has the largest reciprocal?

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{2}{5} \qquad \text{(C)}\ 1 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 1986$

Solution

Problem 3

The smallest sum one could get by adding three different numbers from the set $\{ 7,25,-1,12,-3 \}$ is

$\text{(A)}\ -3 \qquad \text{(B)}\ -1 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 21$

Solution

Problem 4

The product $(1.8)(40.3+.07)$ is closest to

$\text{(A)}\ 7 \qquad \text{(B)}\ 42 \qquad \text{(C)}\ 74 \qquad \text{(D)}\ 84 \qquad \text{(E)}\ 737$

Solution

Problem 5

A contest began at noon one day and ended $1000$ minutes later. At what time did the contest end?

$\text{(A)}\ \text{10:00 p.m.} \qquad \text{(B)}\ \text{midnight} \qquad \text{(C)}\ \text{2:30 a.m.} \qquad \text{(D)}\ \text{4:40 a.m.} \qquad \text{(E)}\ \text{6:40 a.m.}$

Solution

Problem 6

$\frac{2}{1-\frac{2}{3}}=$

$\text{(A)}\ -3 \qquad \text{(B)}\ -\frac{4}{3} \qquad \text{(C)}\ \frac{2}{3} \qquad \text{(D)}\ 2 \qquad \text{(E)}\ 6$

Solution

Problem 7

How many whole numbers are between $\sqrt{8}$ and $\sqrt{80}$?

$\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 8 \qquad \text{(E)}\ 9$

Solution

Problem 8

Solution

Problem 9

Using only the paths and the directions shown, how many different routes are there from $\text{M}$ to $\text{N}$?

[asy] draw((0,0)--(3,0),MidArrow); draw((3,0)--(6,0),MidArrow); draw(6*dir(60)--3*dir(60),MidArrow); draw(3*dir(60)--(0,0),MidArrow); draw(3*dir(60)--(3,0),MidArrow); draw(5.1961524227066318805823390245176*dir(30)--(6,0),MidArrow); draw(6*dir(60)--5.1961524227066318805823390245176*dir(30),MidArrow); draw(5.1961524227066318805823390245176*dir(30)--3*dir(60),MidArrow); draw(5.1961524227066318805823390245176*dir(30)--(3,0),MidArrow); label("M",6*dir(60),N); label("N",(6,0),SE); label("A",3*dir(60),NW); label("B",5.1961524227066318805823390245176*dir(30),NE); label("C",(3,0),S); label("D",(0,0),SW); [/asy]

$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6$

Solution

Problem 10

A picture $3$ feet across is hung in the center of a wall that is $19$ feet wall. How many feet from the end of the wall is the nearest edge of the picture?

$\text{(A)}\ 1\frac{1}{2} \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9\frac{1}{2} \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 22$

Solution

Problem 11

If $\text{A}*\text{B}$ means $\frac{\text{A}+\text{B}}{2}$, then $(3*5)*8$ is

$\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16\qquad \text{(E)}\ 30$

Solution

Problem 12

Solution

Problem 13

The perimeter of the polygon shown is

[asy] draw((0,0)--(0,6)--(8,6)--(8,3)--(2.7,3)--(2.7,0)--cycle); label("$6$",(0,3),W); label("$8$",(4,6),N); [/asy]

$\text{(A)}\ 14 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 28 \qquad \text{(D)}\ 48$

$\text{(E)}\ \text{cannot be determined from the information given}$

Solution

Problem 14

If $200\leq a \leq 400$ and $600\leq b\leq 1200$, then the largest value of the quotient $\frac{b}{a}$ is

$\text{(A)}\ \frac{3}{2} \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 300 \qquad \text{(E)}\ 600$

Solution

Problem 15

Sale prices at the Ajax Outlet Store are $50\%$ below original prices. On Saturdays an additional discount of $20\%$ off the sale price is given. What is the Saturday price of a coat whose original price is <dollar/>$180$?

$\text{(A)}$ <dollar/>$54$

$\text{(B)}$ <dollar/>$72$

$\text{(C)}$ <dollar/>$90$

$\text{(D)}$ <dollar/>$108$

$\text{(D)}$ <dollar/>$110$

Solution

Problem 16

A bar graph shows the number of hamburgers sold by a fast food chain each season. However, the bar indicating the number sold during the winter is covered by a smudge. If exactly $25\%$ of the chain's hamburgers are sold in the fall, how many million hamburgers are sold in the winter?

[asy] size(250);  void bargraph(real X, real Y, real ymin, real ymax, real ystep, real tickwidth,  string yformat, Label LX, Label LY, Label[] LLX, real[] height,pen p=nullpen) { draw((0,0)--(0,Y),EndArrow); draw((0,0)--(X,0),EndArrow); label(LX,(X,0),plain.SE,fontsize(9)); label(LY,(0,Y),plain.NW,fontsize(9)); real yscale=Y/(ymax+ystep);  for(real y=ymin; y<ymax; y+=ystep) { draw((-tickwidth,yscale*y)--(0,yscale*y)); label(format(yformat,y),(-tickwidth,yscale*y),plain.W,fontsize(9)); }  int n=LLX.length; real xscale=X/(2*n+2); for(int i=0;i<n;++i) { real x=xscale*(2*i+1); path P=(x,0)--(x,height[i]*yscale)--(x+xscale,height[i]*yscale)--(x+xscale,0)--cycle; fill(P,p); draw(P); label(LLX[i],(x+xscale/2),plain.S,fontsize(10)); } for(int i=0;i<n;++i) draw((0,height[i]*yscale)--(X,height[i]*yscale),dashed); }  string yf="%#.1f"; Label[] LX={"Spring","Summer","Fall","Winter"}; for(int i=0;i<LX.length;++i) LX[i]=rotate(90)*LX[i]; real[] H={4.5,5,4,4};  bargraph(60,50,1,5.1,0.5,2,yf,"season","hamburgers (millions)",LX,H,yellow); fill(ellipse((45,30),7,10),brown); [/asy]

$\text{(A)}\ 2.5 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 3.5 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 4.5$

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also