Difference between revisions of "2009 AMC 10B Problems/Problem 20"
(New page: i think its B) |
|||
Line 1: | Line 1: | ||
− | + | == Problem == | |
+ | |||
+ | Triangle <math>ABC</math> has a right angle at <math>B</math>, <math>AB=1</math>, and <math>BC=2</math>. The bisector of <math>\angle BAC</math> meets <math>\overline{BC}</math> at <math>D</math>. What is <math>BD</math>? | ||
+ | |||
+ | <asy> | ||
+ | unitsize(2cm); | ||
+ | defaultpen(linewidth(.8pt)+fontsize(8pt)); | ||
+ | dotfactor=4; | ||
+ | |||
+ | pair A=(0,1), B=(0,0), C=(2,0); | ||
+ | pair D=extension(A,bisectorpoint(B,A,C),B,C); | ||
+ | pair[] ds={A,B,C,D}; | ||
+ | |||
+ | dot(ds); | ||
+ | draw(A--B--C--A--D); | ||
+ | |||
+ | label("$1$",midpoint(A--B),W); | ||
+ | label("$B$",B,SW); | ||
+ | label("$D$",D,S); | ||
+ | label("$C$",C,SE); | ||
+ | label("$A$",A,NW); | ||
+ | draw(rightanglemark(C,B,A,2)); | ||
+ | </asy> | ||
+ | |||
+ | <math> | ||
+ | \text{(A) } \frac {\sqrt3 - 1}{2} | ||
+ | \qquad | ||
+ | \text{(B) } \frac {\sqrt5 - 1}{2} | ||
+ | \qquad | ||
+ | \text{(C) } \frac {\sqrt5 + 1}{2} | ||
+ | \qquad | ||
+ | \text{(D) } \frac {\sqrt6 + \sqrt2}{2} | ||
+ | \qquad | ||
+ | \text{(E) } 2\sqrt 3 - 1 | ||
+ | </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Let <math>\angle BAD = \alpha</math>, then <math>\angle BAC = 2\alpha</math>. | ||
+ | |||
+ | Let <math>BD = x</math>, we then have <math>\tan \alpha = \frac x1 = x</math> and <math>\tan (2\alpha) = \frac 21 = 2</math>. | ||
+ | |||
+ | We can now use the formula <math>\tan (2\alpha) = \frac{2 \tan\alpha}{1 - \tan^2 \alpha}</math>. Substituting the values for <math>\tan\alpha</math> and <math>\tan(2\alpha)</math>, we get the equation <math>x^2 + x - 1 = 0</math>. | ||
+ | |||
+ | This quadratic equation has two roots. However, one of them is negative, hence our <math>x</math> is the positive root <math>\boxed{ \frac{\sqrt 5 - 1}2 }</math>. | ||
+ | |||
+ | === Note === | ||
+ | |||
+ | The formula for <math>\tan (2\alpha)</math> can easily be derived using the better-known formulas <math>\sin (2\alpha)=2\sin\alpha\cos\alpha</math> and <math>\cos (2\alpha)=\cos^2\alpha - \sin^2\alpha</math> as follows: | ||
+ | |||
+ | <cmath> | ||
+ | \tan (2\alpha) = \dfrac{ \sin (2\alpha) }{ \cos (2\alpha) } = \dfrac{ 2\sin\alpha\cos\alpha }{ \cos^2\alpha - \sin^2\alpha } | ||
+ | = \dfrac{ \frac{ 2\sin\alpha\cos\alpha }{ \cos^2\alpha } }{ \frac{ \cos^2\alpha - \sin^2\alpha }{ \cos^2\alpha } } = | ||
+ | \frac{2 \tan\alpha}{1 - \tan^2 \alpha} | ||
+ | </cmath> | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2009|ab=B|num-b=19|num-a=21}} |
Revision as of 19:58, 7 March 2009
Contents
Problem
Triangle has a right angle at , , and . The bisector of meets at . What is ?
Solution
Let , then .
Let , we then have and .
We can now use the formula . Substituting the values for and , we get the equation .
This quadratic equation has two roots. However, one of them is negative, hence our is the positive root .
Note
The formula for can easily be derived using the better-known formulas and as follows:
See Also
2009 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |