Difference between revisions of "2010 IMO Problems/Problem 4"
(→See also) |
(→Solution 2) |
||
Line 21: | Line 21: | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 23:08, 15 July 2010
Contents
[hide]Problem
Let be a point interior to triangle
(with
). The lines
,
and
meet again its circumcircle
at
,
, respectively
. The tangent line at
to
meets the line
at
. Show that from
follows
.
Solution
Solution 1
Without loss of generality, suppose that . By Power of a Point,
, so
is tangent to the circumcircle of
. Thus,
. It follows that after some angle-chasing,
so
as desired.
Solution 2
See also
2010 IMO (Problems) • Resources | ||
Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 5 |
All IMO Problems and Solutions |