Difference between revisions of "2010 IMO Problems/Problem 1"
Amparvardi (talk | contribs) (Created page with '== Problem == Find all function <math>f:\mathbb{R}\rightarrow\mathbb{R}</math> such that for all <math>x,y\in\mathbb{R}</math> the following equality holds <math>f(\left\lfloo…') |
m |
||
Line 87: | Line 87: | ||
Therefore <math>\lfloor f(0) \rfloor \neq 0</math>, and now <math>y=0</math> in the given functional equation yields <math>f(0) = f(x)\lfloor f(0) \rfloor</math> for all <math>x \in \mathbb{R}</math>, therefore <math>f(x) = c \neq 0</math> constant, with <math>\lfloor c \rfloor = \lfloor f(1) \rfloor = 1</math>, i.e. <math>c \in [1,2)</math> (which obviously checks).( By mavropnevma [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=64716&]) | Therefore <math>\lfloor f(0) \rfloor \neq 0</math>, and now <math>y=0</math> in the given functional equation yields <math>f(0) = f(x)\lfloor f(0) \rfloor</math> for all <math>x \in \mathbb{R}</math>, therefore <math>f(x) = c \neq 0</math> constant, with <math>\lfloor c \rfloor = \lfloor f(1) \rfloor = 1</math>, i.e. <math>c \in [1,2)</math> (which obviously checks).( By mavropnevma [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=64716&]) | ||
+ | |||
+ | |||
+ | == See also == | ||
+ | {{IMO box|year=2010|num-b=First question|num-a=2}} | ||
+ | |||
+ | [[Category:Olympiad Geometry Problems]] |
Revision as of 22:50, 23 October 2010
Problem
Find all function such that for all the following equality holds
where is greatest integer not greater than
Solutions
Solution 1
Put . Then or .
If , putting we get , that is f is constant. Substituing in the original equation we find or , where .
If , putting we get or .
For , we set to find , which is a solution.
For , setting yields .
Putting to the original we get . However, from we have , so which contradicts the fact .
So, or . ( By socrates[1])
Solution 2
Substituting we have . If then . Then is constant. Let . Then substituting that in (1) we have , or . Therefore where or
If then . Now substituting we have . If then and substituting this in (1) we have . Then . Substituting we get . Then , which is a contradiction Therefore . and then for all
Then the only solutions are or where .( By m.candales [2])
Solution 3
Let , then .
Case 1:
Then is a constant. Let , then . It is easy to check that this are solutions.
Case 2:
In this case we conclude that
Lemma:If is such that ,
Proof of the Lemma: If we have that , as desired.
Let , so that we have:
, using the lemma.
If is not constant and equal to , letting be such that implies that .
Now it's enough to notice that any real number is equal to , where and , so that . Since was arbitrary, we have that is constant and equal to .
We conclude that the solutions are , where .( By Jorge Miranda [3]
)
Solution 4
Clearly , so for all .
If for all , then by taking we get , so is identically null (which checks).
If, contrariwise, for some , it follows for all .
Now it immediately follows , hence .
For this implies . Assume ; then , absurd.
Therefore , and now in the given functional equation yields for all , therefore constant, with , i.e. (which obviously checks).( By mavropnevma [4])
See also
2010 IMO (Problems) • Resources | ||
Preceded by Problem First question |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |