GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2011 AMC 10A Problems"

(Problem 10)
(Problem 11)
Line 86: Line 86:
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
Square <math>EFGH</math> has one vertex on each side of square <math>ABCD</math>.  Point <math>E</math> is on <math>AB</math> with <math>AE=7\cdot EB</math>.  What is the ratio of the area of <math>EFGH</math> to the area of <math>ABCD</math>?
  
 +
<math>\text{(A)}\,\frac{49}{64}    \qquad\text{(B)}\,\frac{25}{32}    \qquad\text{(C)}\,\frac78 \qquad\text{(D)}\,\frac{5\sqrt{2}}{8}  \qquad\text{(E)}\,\frac{\sqrt{14}}{4} </math>
 
[[2011 AMC 10A Problems/Problem 11|Solution]]
 
[[2011 AMC 10A Problems/Problem 11|Solution]]
  

Revision as of 19:28, 13 February 2011

Problem 1

A cell phone plan costs $$$20$ each month, plus $5$¢ per text message sent, plus 10¢ for each minute used over $30$ hours. In January Michelle sent $100$ text messages and talked for $30.5$ hours. How much did she have to pay?

$\textbf{(A)}$ $24.00 \qquad\textbf{(B)}$ $24.50 \qquad\textbf{(C)}$ $25.50\qquad\textbf{(D)}$ $28.00\qquad\textbf{(E)}$ $30.00$

Solution

Problem 2

A small bottle of shampoo can hold 35 milliliters of shampoo, whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy?

$\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15$

Solution

Problem 3

Suppose [$a$ $b$] denotes the average of $a$ and $b$, and {$a$ $b$ $c$} denotes the average of $a$, $b$, and $c$. What is {{1 1 0} [0 1] 0}?

$\textbf{(A)}\ \frac{2}{9} \qquad\textbf{(B)}\ \frac{5}{18} \qquad\textbf{(C)}\ \frac{1}{3} \qquad\textbf{(D)}\ \frac{7}{18} \qquad\textbf{(E)}\ \frac{2}{3}$

Solution

Problem 4

Let $X$ and $Y$ be the following sums of arithmetic sequences: \begin{eqnarray*} X &=& 10 + 12 + 14 + \cdots + 100, \\ Y &=& 12 + 14 + 16 + \cdots + 102. \end{eqnarray*} What is the value of $Y - X$?

$\textbf{(A)}\ 92\qquad\textbf{(B)}\ 98\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 102\qquad\textbf{(E)}\ 112$


Solution

Problem 5

At an elementary school, the students in third grade, fourth grade, and fifth grade run an average of $12$, $15$, and $10$ minutes per day, respectively. There are twice as many third graders as fourth graders, and twice as many fourth graders as fifth graders. What is the average number of minutes run per day by these students?

$\textbf{(A)}\ 12 \qquad\textbf{(B)}\  \frac{37}{3} \qquad\textbf{(C)}\  \frac{88}{7} \qquad\textbf{(D)}\ 13\qquad\textbf{(E)}\ 14$

Solution

Problem 6

Set $A$ has 20 elements, and set $B$ has 15 elements. What is the smallest possible number of elements in $A   \cup  B$, the union of $A$ and $B$?

$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 35\qquad\textbf{(E)}\ 300$

Solution

Problem 7

Which of the following equations does NOT have a solution?

$\text{(A)}\:(x+7)^2=0$

$\text{(B)}\:|-3x|+5=0$

$\text{(C)}\:\sqrt{-x}-2=0$

$\text{(D)}\:\sqrt{x}-8=0$

$\text{(E)}\:|-3x|-4=0$

Solution

Problem 8

Last summer 30% of the birds living on Town Lake were geese, 25% were swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were geese?


$\textbf{(A)}\ 20 \qquad\textbf{(B)}\ 30 \qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 50\qquad\textbf{(E)}\ 60$

Solution

Problem 9

A rectangular region is bounded by the graphs of the equations $y=a, y=-b, x=-c,$ and $x=d$, where $a,b,c,$ and $d$ are all positive numbers. Which of the following represents the area of this region?

$\textbf{(A)}\ ac+ad+bc+bd\qquad\textbf{(B)}\ ac-ad+bc-bd\qquad\textbf{(C)}\ ac+ad-bc-bd   \quad\quad\qquad\textbf{(D)}\ -ac-ad+bc+bd\qquad\textbf{(E)}\ ac-ad-bc+bd$

Solution

Problem 10

A majority of the 30 students in Ms. Deameanor's class bought pencils at the school bookstore. Each of these students bought the same number of pencils, and this number was greater than 1. The cost of a pencil in cents was greater than the number of pencils each student bought, and the total cost of all the pencils was $$$17.71$. What was the cost of a pencil in cents?

$\text{(A)}\,13 \qquad\text{(B)}\,14 \qquad\text{(C)}\,15 \qquad\text{(D)}\,16 \qquad\text{(E)}\,17$

Solution

Problem 11

Square $EFGH$ has one vertex on each side of square $ABCD$. Point $E$ is on $AB$ with $AE=7\cdot EB$. What is the ratio of the area of $EFGH$ to the area of $ABCD$?

$\text{(A)}\,\frac{49}{64}     \qquad\text{(B)}\,\frac{25}{32}     \qquad\text{(C)}\,\frac78 \qquad\text{(D)}\,\frac{5\sqrt{2}}{8}   \qquad\text{(E)}\,\frac{\sqrt{14}}{4}$ Solution

Problem 12

The players on a basketball team made some three-point shots, some two-point shots, and some one-point free throws. They scored as many points with two-point shots as with three-point shots. Their number of successful free throws was one more than their number of successful two-point shots. The team's total score was 61 points. How many free throws did they make?

$\text{(A)}\,13 \qquad\text{(B)}\,14 \qquad\text{(C)}\,15 \qquad\text{(D)}\,16 \qquad\text{(E)}\,17$


Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

In 1991 the population of a town was a perfect square. Ten years later, after an increase of 150 people, the population was 9 more than a perfect square. Now, in 2011, with an increase of another 150 people, the population is once again a perfect square. Which of the following is closest to the percent growth of the town's population during this twenty-year period?

$\textbf{(A)}\ 42 \qquad\textbf{(B)}\ 47 \qquad\textbf{(C)}\ 52\qquad\textbf{(D)}\ 57\qquad\textbf{(E)}\ 62$

Solution

Problem 20

Two points on the circumference of a circle of radius r are selected independently and at random. From each point a chord of length r is drawn in a clockwise direction. What is the probability that the two chords intersect?

$\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Two distinct regular tetrahedra have all their vertices among the vertices of the same unit cube. What is the volume of the region formed by the intersection of the tetrahedra?

$\textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{\sqrt{2}}{12}\qquad\textbf{(C)}\ \frac{\sqrt{3}}{12}\qquad\textbf{(D)}\ \frac{1}{6}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{6}$

Solution

Problem 25

Solution