Difference between revisions of "1999 AHSME Problems/Problem 15"
m (Equals sign) |
(Formatting) |
||
Line 1: | Line 1: | ||
+ | {{solution}} | ||
+ | |||
+ | ==Problem== | ||
+ | |||
Let <math> x</math> be a real number such that <math> \sec x \minus{} \tan x = 2</math>. Then <math> \sec x \plus{} \tan x =</math> | Let <math> x</math> be a real number such that <math> \sec x \minus{} \tan x = 2</math>. Then <math> \sec x \plus{} \tan x =</math> | ||
Line 6: | Line 10: | ||
\textbf{(D)}\ 0.4 \qquad | \textbf{(D)}\ 0.4 \qquad | ||
\textbf{(E)}\ 0.5</math> | \textbf{(E)}\ 0.5</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME box|year=1999|num-b=14|num-a=16}} |
Revision as of 19:37, 2 June 2011
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Problem
Let be a real number such that $\sec x \minus{} \tan x = 2$ (Error compiling LaTeX. Unknown error_msg). Then $\sec x \plus{} \tan x =$ (Error compiling LaTeX. Unknown error_msg)
Solution
See Also
1999 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |