Difference between revisions of "1971 Canadian MO Problems/Problem 6"

(Solution)
(Solution)
Line 28: Line 28:
 
   
 
   
  
If <math>n \equiv 10 \mod 11</math>, <math>(n+1)^2 \equiv (10+1)^2 \equiv 121 \mod 11</math>, thus a multiple of 11. However, considering the equation <math>\mod 121</math>, <math>(n+1)^2 + 11 \equiv (10+1)^2 + 11 \equiv 121+ 11 \equiv 132 \equiv 11 \mod 121</math>, thus not a multiple of 121, even though it is a multiple of 11.  
+
If <math>n \equiv 10 \mod 11</math>, <math>(n+1)^2 \equiv (10+1)^2 \equiv 0\mod 11</math>. However, considering the equation <math>\mod 121</math> for <math>n \equiv 10 \mod 11</math>, testing <math>n = 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120</math>, we see that <math>(n+1)^2 + 11 always leave a remainder of greater than 1 \mod 121</math>.  
  
 
Thus, for any integer <math>n</math>, <math>n^2+2n+12</math> is not a multiple of <math>121</math>.
 
Thus, for any integer <math>n</math>, <math>n^2+2n+12</math> is not a multiple of <math>121</math>.

Revision as of 21:12, 14 December 2011

Problem

Show that, for all integers $n$, $n^2+2n+12$ is not a multiple of $121$.

Solution

$n^2 + 2n + 12 = (n+1)^2 + 11$. Consider this equation mod 11. $(n+1)^2 + 11 \equiv (n+1)^2 \mod 11$. The quadratic residues $mod 11$ are $1, 3, 4, 5, 9$, and $0$ (as shown below).

If $n \equiv 0 \mod 11$, $(n+1)^2 \equiv (0+1)^2 \equiv 1\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 1 \mod 11$, $(n+1)^2 \equiv (1+1)^2 \equiv 4\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 2 \mod 11$, $(n+1)^2 \equiv (2+1)^2 \equiv 9\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 3 \mod 11$, $(n+1)^2 \equiv (3+1)^2 \equiv 5\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 4 \mod 11$, $(n+1)^2 \equiv (4+1)^2 \equiv 3\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 5 \mod 11$, $(n+1)^2 \equiv (5+1)^2 \equiv 3\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 6 \mod 11$, $(n+1)^2 \equiv (6+1)^2 \equiv 5\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 7 \mod 11$, $(n+1)^2 \equiv (7+1)^2 \equiv 9\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 8 \mod 11$, $(n+1)^2 \equiv (8+1)^2 \equiv 4\mod 11$, thus not a multiple of 11, nor 121.

If $n \equiv 9 \mod 11$, $(n+1)^2 \equiv (9+1)^2 \equiv 1\mod 11$, thus not a multiple of 11, nor 121.


If $n \equiv 10 \mod 11$, $(n+1)^2 \equiv (10+1)^2 \equiv 0\mod 11$. However, considering the equation $\mod 121$ for $n \equiv 10 \mod 11$, testing $n = 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120$, we see that $(n+1)^2 + 11 always leave a remainder of greater than 1 \mod 121$.

Thus, for any integer $n$, $n^2+2n+12$ is not a multiple of $121$.


1971 Canadian MO (Problems)
Preceded by
Problem 5
1 2 3 4 5 6 7 8 Followed by
Problem 7