Difference between revisions of "Trigonometric identities"

m (added 2 trig identities)
Line 2: Line 2:
  
  
 +
== Reciprocal Identities ==
 +
 +
== Pythagorean Identities ==
 
*<math>\displaystyle \sin^2x + \cos^2x = 1</math>
 
*<math>\displaystyle \sin^2x + \cos^2x = 1</math>
 
*<math>\displaystyle 1 + \cot^2x = \csc^2x</math>
 
*<math>\displaystyle 1 + \cot^2x = \csc^2x</math>
 
*<math>\displaystyle \tan^2x + 1 = \sec^2x</math>
 
*<math>\displaystyle \tan^2x + 1 = \sec^2x</math>
 +
 +
== Double Angle Identities ==
 +
 +
== Even-Odd Identities ==
 +
 +
== Other Identities ==
 +
 
*<math>|1-e^{i\theta}|=2\sin\frac{\theta}{2}</math>
 
*<math>|1-e^{i\theta}|=2\sin\frac{\theta}{2}</math>
  

Revision as of 22:53, 23 June 2006

Trigonometric identities are used to manipulate trig equations in certain ways. Here is a list of them:


Reciprocal Identities

Pythagorean Identities

  • $\displaystyle \sin^2x + \cos^2x = 1$
  • $\displaystyle 1 + \cot^2x = \csc^2x$
  • $\displaystyle \tan^2x + 1 = \sec^2x$

Double Angle Identities

Even-Odd Identities

Other Identities

  • $|1-e^{i\theta}|=2\sin\frac{\theta}{2}$

This page is incomplete--if you know of a trigonometric identity, add it.

See also