Difference between revisions of "2008 AMC 12A Problems/Problem 19"
m (→Solution) |
|||
Line 10: | Line 10: | ||
Since there are <math>15</math> terms in <math>A</math>, there are <math>15^2 = 225</math> ways to choose one term from each <math>A</math>. The product of the selected terms is <math>x^n</math> for some integer <math>n</math> between <math>0</math> and <math>28</math> inclusive. For each <math>n \neq 0</math>, there is one and only one <math>x^{28 - n}</math> in <math>B</math>. For example, if I choose <math>x^2</math> from <math>A</math> , then there is exactly one power of <math>x</math> in <math>B</math> that I can choose; in this case, it would be <math>x^{24}</math>. Since there is only one way to choose one term from each <math>A</math> to get a product of <math>x^0</math>, there are <math>225 - 1 = 224</math> ways to choose one term from each <math>A</math> and one term from <math>B</math> to get a product of <math>x^{28}</math>. Thus the coefficient of the <math>x^{28}</math> term is <math>224 \Rightarrow C</math>. | Since there are <math>15</math> terms in <math>A</math>, there are <math>15^2 = 225</math> ways to choose one term from each <math>A</math>. The product of the selected terms is <math>x^n</math> for some integer <math>n</math> between <math>0</math> and <math>28</math> inclusive. For each <math>n \neq 0</math>, there is one and only one <math>x^{28 - n}</math> in <math>B</math>. For example, if I choose <math>x^2</math> from <math>A</math> , then there is exactly one power of <math>x</math> in <math>B</math> that I can choose; in this case, it would be <math>x^{24}</math>. Since there is only one way to choose one term from each <math>A</math> to get a product of <math>x^0</math>, there are <math>225 - 1 = 224</math> ways to choose one term from each <math>A</math> and one term from <math>B</math> to get a product of <math>x^{28}</math>. Thus the coefficient of the <math>x^{28}</math> term is <math>224 \Rightarrow C</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | Let <math>P(x) = \left(1 + x + x^2 + \cdots + x^{14}\right)^2 = a_0 + a_1x + a_2x^2 + \cdots + a_{28}x^{28}</math>. Then the <math>x^{28}</math> term from the product in question <math>\left(1 + x + x^2 + \cdots + x^{27}\right)(a_0 + a_1x + a_2x^2 + \cdots + a_{28}x^{28})</math> is | ||
+ | |||
+ | <math>1a_{28}x^{28} + xa_{27}x^{27} + x^2a_{26}x^{26} + \cdots + x^{27}a_1x = \left(a_1 + a_2 + \cdots a_{28}\right)x^{28}</math> | ||
+ | |||
+ | So we are trying to find the sum of the coefficients of <math>P(x)</math> minus <math>a_0</math>. Since the constant term <math>a_0</math> in <math>P(x)</math> (when expanded) is <math>1</math>, and the sum of the coefficients of <math>P(x)</math> is <math>P(1)</math>, we find the answer to be | ||
+ | <math>P(1) - a_0 | ||
+ | = \left(1 + 1 + 1^2 + \cdots 1^{14}\right)^2 - 1 | ||
+ | = 15^2 - 1 | ||
+ | = 224 \rightarrow C</math> | ||
+ | |||
==See Also== | ==See Also== |
Revision as of 05:18, 15 January 2012
Contents
Problem
In the expansion of what is the coefficient of ?
Solution
Let and . We are expanding .
Since there are terms in , there are ways to choose one term from each . The product of the selected terms is for some integer between and inclusive. For each , there is one and only one in . For example, if I choose from , then there is exactly one power of in that I can choose; in this case, it would be . Since there is only one way to choose one term from each to get a product of , there are ways to choose one term from each and one term from to get a product of . Thus the coefficient of the term is .
Solution 2
Let . Then the term from the product in question is
So we are trying to find the sum of the coefficients of minus . Since the constant term in (when expanded) is , and the sum of the coefficients of is , we find the answer to be
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |