Difference between revisions of "1993 USAMO Problems/Problem 1"

Line 22: Line 22:
  
 
== See also ==
 
== See also ==
{{USAMO box|year=1993|before=First Question|num-a=2}}
+
{{USAMO box|year=1993|before=First Problem|num-a=2}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]

Revision as of 14:29, 15 April 2012

Problem

For each integer $n\ge 2$, determine, with proof, which of the two positive real numbers $a$ and $b$ satisfying \[a^n=a+1,\qquad b^{2n}=b+3a\] is larger.

Solution

Square and rearrange the first equation and also rearrange the second. \begin{align} a^{2n}-a&=a^2+a+1\\ b^{2n}-b&=3a \end{align} It is trivial that \begin{align*} (a-1)^2 > 0 \tag{3} \end{align*} since $a-1$ clearly cannot equal $0$ (Otherwise $a^n=1\neq 1+1$). Thus \begin{align*} a^2+a+1&>3a \tag{4}\\ a^{2n}-a&>b^{2n}-b \tag{5} \end{align*} where we substituted in equations (1) and (2) to achieve (5). Notice that from $a^{n}=a+1$ we have $a>1$. Thus, if $b>a$, then $b^{2n-1}-1>a^{2n-1}-1$. Since $a>1\Rightarrow a^{2n-1}-1>0$, multiplying the two inequalities yields $b^{2n}-b>a^{2n}-a$, a contradiction, so $a> b$. However, when $n$ equals $0$ or $1$, the first equation becomes meaningless, so we conclude that for each integer $n\ge 2$, we always have $a>b$.

See also

1993 USAMO (ProblemsResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5
All USAMO Problems and Solutions