Difference between revisions of "2013 AMC 10A Problems/Problem 23"

(Created page with "==Problem== In <math>\triangle ABC</math>, <math>AB = 86</math>, and <math>AC=97</math>. A circle with center <math>A</math> and radius <math>AB</math> intersects <math>\overli...")
 
Line 8: Line 8:
  
 
==Solution==
 
==Solution==
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2013|ab=A|num-b=22|num-a=24}}
 +
{{AMC12 box|year=2013|ab=A|num-b=18|num-a=20}}

Revision as of 21:15, 7 February 2013

Problem

In $\triangle ABC$, $AB = 86$, and $AC=97$. A circle with center $A$ and radius $AB$ intersects $\overline{BC}$ at points $B$ and $X$. Moreover $\overline{BX}$ and $\overline{CX}$ have integer lengths. What is $BC$?


$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 61\qquad\textbf{(E)}\ 72$

Solution

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions