Difference between revisions of "2013 AMC 10A Problems/Problem 23"

Line 10: Line 10:
  
 
Let <math>BX = q</math>, <math>CX = p</math>, and <math>AC</math> meet the circle at <math>Y</math> and <math>Z</math>, with <math>Y</math> on <math>BC</math>.  Then <math>AZ = AY = 86</math>.  Using the Power of a Point, we get that <math>p(p+q) = 11(183) = 11 * 3 * 61</math>.  We know that <math>p+q>p</math>, and that <math>p>13</math> by the triangle inequality on <math>\triangle ACX</math>.  Thus, we get that <math>BC = p+q = \boxed{\textbf{(D) }61}</math>
 
Let <math>BX = q</math>, <math>CX = p</math>, and <math>AC</math> meet the circle at <math>Y</math> and <math>Z</math>, with <math>Y</math> on <math>BC</math>.  Then <math>AZ = AY = 86</math>.  Using the Power of a Point, we get that <math>p(p+q) = 11(183) = 11 * 3 * 61</math>.  We know that <math>p+q>p</math>, and that <math>p>13</math> by the triangle inequality on <math>\triangle ACX</math>.  Thus, we get that <math>BC = p+q = \boxed{\textbf{(D) }61}</math>
 +
 +
===Solution 2===
 +
Let <math>x</math> represent <math>BX</math>, and let <math>y</math> represent <math>CX</math>. Since the circle goes through <math>B</math> and <math>X</math>, <math>AB</math> = <math>AX</math> = 86.
 +
Then by Stewart's Theorem,
 +
 +
<math>xy(x+y) + 86^2 (x+y) = 97^2 y + 86^2 x.</math>
 +
 +
<math>x^2 y + xy^2 + 86^2 x + 86^2 y = 97^2 y + 86^2 x</math>
 +
 +
<math>x^2 + xy + 86^2 = 97^2</math>
 +
 +
(Since <math>y</math> cannot be equal to 0, dividing both sides of the equation by <math>y</math> is allowed.)
 +
 +
<math>x(x+y) = (97+86)(97-86)</math>
 +
 +
<math>x(x+y) = 2013</math>
 +
 +
The prime factors of 2013 are 3, 11, and 61. Obviously, <math>x < x+y</math>. In addition, by the Triangle Inequality, <math>BC < AB + AC</math>, so <math>x+y < 183</math>. Therefore, <math>x</math> must equal 33, and <math>x+y</math> must equal 61. <math>\boxed{D}</math>
 +
 +
 +
-Solution 2 by '''fowlmaster'''
  
  

Revision as of 20:50, 8 February 2013

Problem

In $\triangle ABC$, $AB = 86$, and $AC=97$. A circle with center $A$ and radius $AB$ intersects $\overline{BC}$ at points $B$ and $X$. Moreover $\overline{BX}$ and $\overline{CX}$ have integer lengths. What is $BC$?


$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 33\qquad\textbf{(D)}\ 61\qquad\textbf{(E)}\ 72$

Solution

Let $BX = q$, $CX = p$, and $AC$ meet the circle at $Y$ and $Z$, with $Y$ on $BC$. Then $AZ = AY = 86$. Using the Power of a Point, we get that $p(p+q) = 11(183) = 11 * 3 * 61$. We know that $p+q>p$, and that $p>13$ by the triangle inequality on $\triangle ACX$. Thus, we get that $BC = p+q = \boxed{\textbf{(D) }61}$

Solution 2

Let $x$ represent $BX$, and let $y$ represent $CX$. Since the circle goes through $B$ and $X$, $AB$ = $AX$ = 86. Then by Stewart's Theorem,

$xy(x+y) + 86^2 (x+y) = 97^2 y + 86^2 x.$

$x^2 y + xy^2 + 86^2 x + 86^2 y = 97^2 y + 86^2 x$

$x^2 + xy + 86^2 = 97^2$

(Since $y$ cannot be equal to 0, dividing both sides of the equation by $y$ is allowed.)

$x(x+y) = (97+86)(97-86)$

$x(x+y) = 2013$

The prime factors of 2013 are 3, 11, and 61. Obviously, $x < x+y$. In addition, by the Triangle Inequality, $BC < AB + AC$, so $x+y < 183$. Therefore, $x$ must equal 33, and $x+y$ must equal 61. $\boxed{D}$


-Solution 2 by fowlmaster


See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions