Difference between revisions of "2013 AIME II Problems/Problem 4"

(Solution)
Line 1: Line 1:
 
In the Cartesian plane let <math>A = (1,0)</math> and <math>B = \left( 2, 2\sqrt{3} \right)</math>.  Equilateral triangle <math>ABC</math> is constructed so that <math>C</math> lies in the first quadrant.  Let <math>P=(x,y)</math> be the center of <math>\triangle ABC</math>.  Then <math>x \cdot y</math> can be written as <math>\tfrac{p\sqrt{q}}{r}</math>, where <math>p</math> and <math>r</math> are relatively prime positive integers and <math>q</math> is an integer that is not divisible by the square of any prime.  Find <math>p+q+r</math>.
 
In the Cartesian plane let <math>A = (1,0)</math> and <math>B = \left( 2, 2\sqrt{3} \right)</math>.  Equilateral triangle <math>ABC</math> is constructed so that <math>C</math> lies in the first quadrant.  Let <math>P=(x,y)</math> be the center of <math>\triangle ABC</math>.  Then <math>x \cdot y</math> can be written as <math>\tfrac{p\sqrt{q}}{r}</math>, where <math>p</math> and <math>r</math> are relatively prime positive integers and <math>q</math> is an integer that is not divisible by the square of any prime.  Find <math>p+q+r</math>.
  
==Solution==
+
==Solution 1 ==
The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M =  (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the lenght of <math>\overline{MP}</math> to be <math>\dfrac{\sqrt{13}}{2\sqrt{3}}</math>. Therefore, <math>P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})</math>. Therefore <math>xy = \dfrac{25\sqrt{3}}{12}</math> yielding an answer of <math> p + q + r  = 25 + 3 + 12 = \boxed{040}</math>.
+
The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M =  (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the length of <math>\overline{MP}</math> to be <math>\dfrac{\sqrt{13}}{2\sqrt{3}}</math>. Therefore, <math>P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})</math>. Therefore <math>xy = \dfrac{25\sqrt{3}}{12}</math> yielding an answer of <math> p + q + r  = 25 + 3 + 12 = \boxed{040}</math>.
 +
 
 +
 
 +
==Solution 2==
 +
 
 +
Rather than considering the Cartesian plane, we use complex numbers. Thus A is 1 and B is <math>2 + 2\sqrt{3}i</math>.
 +
 
 +
Recall that a rotation of <math>\theta</math> radians counterclockwise is equivalent to multiplying a complex number by <math>e^{i\theta}</math>, but here we require a clockwise rotation, so we multiply by <math>e^{-\frac{i\pi}{3}}</math> to obtain C. Upon averaging the coordinates of A, B, and C, we obtain the coordinates of P, viz. <math>\left(\frac{5}{2}, \frac{5\sqrt{3}}{6}\right)</math>.
 +
 
 +
Therefore <math>xy</math> is <math>\frac{25\sqrt{3}}{12}</math> and the answer is <math>25 + 12 + 3 = \boxed{040}</math>.

Revision as of 18:10, 4 April 2013

In the Cartesian plane let $A = (1,0)$ and $B = \left( 2, 2\sqrt{3} \right)$. Equilateral triangle $ABC$ is constructed so that $C$ lies in the first quadrant. Let $P=(x,y)$ be the center of $\triangle ABC$. Then $x \cdot y$ can be written as $\tfrac{p\sqrt{q}}{r}$, where $p$ and $r$ are relatively prime positive integers and $q$ is an integer that is not divisible by the square of any prime. Find $p+q+r$.

Solution 1

The distance from point $A$ to point $B$ is $\sqrt{13}$. The vector that starts at point A and ends at point B is given by $B - A = (1, 2\sqrt{3})$. Since the center of an equilateral triangle, $P$, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to $\overline{AB}$. The line perpendicular to $\overline{AB}$ through the midpoint, $M =  (\dfrac{3}{2},\sqrt{3})$, $\overline{AB}$ can be parameterized by $(\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})$. At this point, it is useful to note that $\Delta BMP$ is a 30-60-90 triangle with $\overline{MB}$ measuring $\dfrac{\sqrt{13}}{2}$. This yields the length of $\overline{MP}$ to be $\dfrac{\sqrt{13}}{2\sqrt{3}}$. Therefore, $P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})$. Therefore $xy = \dfrac{25\sqrt{3}}{12}$ yielding an answer of $p + q + r  = 25 + 3 + 12 = \boxed{040}$.


Solution 2

Rather than considering the Cartesian plane, we use complex numbers. Thus A is 1 and B is $2 + 2\sqrt{3}i$.

Recall that a rotation of $\theta$ radians counterclockwise is equivalent to multiplying a complex number by $e^{i\theta}$, but here we require a clockwise rotation, so we multiply by $e^{-\frac{i\pi}{3}}$ to obtain C. Upon averaging the coordinates of A, B, and C, we obtain the coordinates of P, viz. $\left(\frac{5}{2}, \frac{5\sqrt{3}}{6}\right)$.

Therefore $xy$ is $\frac{25\sqrt{3}}{12}$ and the answer is $25 + 12 + 3 = \boxed{040}$.