Difference between revisions of "2007 AMC 10A Problems/Problem 9"

m (soln)
 
Line 17: Line 17:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 10:50, 4 July 2013

Problem

Real numbers $a$ and $b$ satisfy the equations $3^{a} = 81^{b + 2}$ and $125^{b} = 5^{a - 3}$. What is $ab$?

$\text{(A)}\ -60 \qquad \text{(B)}\ -17 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 60$

Solution

\[81^{b+2} = 3^{4(b+2)} = 3^a \Longrightarrow a = 4b+8\]

And

\[125^{b} = 5^{3b} = 5^{a-3} \Longrightarrow a - 3 = 3b\]

Substitution gives $4b+8 - 3 = 3b \Longrightarrow b = -5$, and solving for $a$ yields $-12$. Thus $ab = 60\ \mathrm{(E)}$.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png