Difference between revisions of "2003 AIME I Problems/Problem 9"
m (note) |
|||
Line 11: | Line 11: | ||
[[Category: Intermediate Combinatorics Problems]] | [[Category: Intermediate Combinatorics Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 18:58, 4 July 2013
Problem
An integer between and , inclusive, is called balanced if the sum of its two leftmost digits equals the sum of its two rightmost digits. How many balanced integers are there?
Solution
If the common sum of the first two and last two digits is , , there are choices for the first two digits and choices for the second two digits (since zero may not be the first digit). This gives balanced numbers. If the common sum of the first two and last two digits is , , there are choices for both pairs. This gives balanced numbers. Thus, there are in total balanced numbers.
Both summations may be calculated using the formula for the sum of consecutive squares, namely .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.