|
|
Line 75: |
Line 75: |
| </asy> | | </asy> |
| <cmath>\text{Prove the shaded areas are equal.}</cmath> | | <cmath>\text{Prove the shaded areas are equal.}</cmath> |
− | ==sndbozx==
| |
− | <asy>
| |
− | draw((9,0)--(21,0)--(16,12)--(0,12)--cycle);
| |
− | draw(Circle((12,6),6));
| |
− | draw((12,0)--(12,12),linetype("8 8")+red);
| |
− | draw((12,6)--(228/13,108/13),linetype("8 8")+red);
| |
− | draw((12,6)--(9-27/(sqrt(313)),36/(sqrt(313))),linetype("8 8")+red);
| |
− | label("$A$",(0,12),N);
| |
− | label("$B$",(16,12),N);
| |
− | label("$C$",(21,0),S);
| |
− | label("$D$",(9,0),S);
| |
− | label("$E$",(12,12),N,red);
| |
− | label("$F$",(228/13,108/13),NE,red);
| |
− | label("$G$",(12,0),S,red);
| |
− | label("$H$",(9-27/(sqrt(313)),36/(sqrt(313))),SW,red);
| |
− | label("$O$",(12,6),NW);
| |
− | draw((16,12)--(16,0),linetype("8 8")+green);
| |
− | label("$P$",(16,0),S,green);
| |
− | </asy>
| |
− | We are given that <math>AB=16</math>, <math>CD=12</math>, and <math>\overline{AB}\parallel\overline{CD}</math>.
| |
− |
| |
− | We can forget the restriction <math>BC<AD</math> because if <math>BC>AD</math>, we can just switch the labeling around so that <math>BC<AD</math>.
| |
− |
| |
− | Label the center of the inscribed circle <math>O</math>; Draw lines <math>\overline{OE}</math>, <math>\overline{OF}</math>, <math>\overline{OG}</math>, and <math>\overline{OH}</math>
| |
− |
| |
− | where <math>E</math>, <math>F</math>, <math>G</math>, and <math>H</math> are the tangent points of the circle and <math>\overline{AB}</math>, <math>\overline{BC}</math>, <math>\overline{CD}</math> and <math>\overline{DA}</math> respectively.
| |
− |
| |
− | Note that <math>\angle EBF+\angle GCF=180^{\circ}</math> because the angles of quadrilateral <math>EGCB</math> add up to <math>360^{\circ}</math>, and <math>\angle OEB=\angle OGC=90^{\circ}</math>.
| |
− |
| |
− | Also, <math>\angle EBF+\angle EOF=180^{\circ}</math> because the angles of quadrilateral <math>EBFO</math> add up to <math>360^{\circ}</math>, and <math>\angle OEB=\angle OFB=90^{\circ}</math>.
| |
− |
| |
− | Therefore, <math>\angle GCF=\angle EOF</math>. By a similar reasoning, <math>\angle EBF=\angle GOF</math>. Therefore, <math>EBFO\sim GOFC</math>.
| |
− |
| |
− | By a similar reasoning as before, <math>AEOH\sim OGDH</math>.
| |
− |
| |
− | Let <math>BE=a</math>, and <math>AE=b</math>, <math>DG=c</math>, and <math>CG=d</math>. We also know that <math>EO=FO=GO=HO=6</math> because the diameter of circle <math>O</math> is <math>12</math>.
| |
− |
| |
− | Since <math>AEOH\sim OGDH</math>, then <math>\dfrac{c}{GO}=\dfrac{EO}{b}\implies\dfrac{c}{6}=\dfrac{6}{b}\implies bc=36</math>.
| |
− |
| |
− | Similarly, since <math>EBFO\sim GOFC</math>, then <math>\dfrac{d}{GO}=\dfrac{EO}{a}\implies\dfrac{d}{6}=\dfrac{6}{a}\implies ad=36</math>.
| |
− |
| |
− | Also, <math>a+b=AB=16</math>, and <math>c+d=CD=12</math>. Therefore <math>b=16-a</math> and <math>d=12-c</math>.
| |
− |
| |
− | We now substitute <math>b</math> and <math>d</math> into our other two equations: <math>(16-a)c=36</math> and <math>a(12-c)=36</math>.
| |
− |
| |
− | Expanding gives <math>16c-ac=36</math> and <math>12a-ac=36</math>. Subtracting these two equations gives <math>12a-16c=0\implies 12a=16c\implies a=\dfrac{4}{3}c</math>.
| |
− |
| |
− | Substituting <math>a</math> back into <math>a(12-c)=36</math> yields <math>\dfrac{4}{3}c(12-c)=36\implies 16c-\dfrac{4}{3}c^2=36\implies \dfrac{4}{3}c^2-16c+36=0</math>
| |
− |
| |
− | Solving this quadratic gives <math>c=3, 9</math>. Based on the picture, <math>c</math> is obviously not <math>9</math> since <math>c<d</math>, so <math>c=3</math>. Therefore, <math>d=12-c=9</math>.
| |
− |
| |
− | (Note: if I had said <math>c=9</math>, there wouldn't be any contradiction, apart from the fact that the picture would be drawn "flipped")
| |
− |
| |
− | Also, <math>a=\dfrac{4}{3}(3)=4</math> and so <math>b=16-a=12</math>.
| |
− |
| |
− | All we need to find now is the length of <math>\overline{BC}</math>. Draw the height <math>\overline{BP}</math> with base <math>\overline{CD}</math>.
| |
− |
| |
− | Since <math>\angle BPC=90^{\circ}</math>, we can use Pythagorean Theorem: <math>PC=d-a=5</math>, <math>BP=12</math>, therefore <math>BC=\sqrt{5^2+12^2}=\boxed{13}</math>. <math>\Box</math>
| |
Bobthesmartypants's Sandbox
Solution 1
First, continue to hit at . Also continue to hit at .
We have that . Because , we have .
Similarly, because , we have .
Therefore, .
We also have that because is a parallelogram, and .
Therefore, . This means that , so .
Therefore, .
Solution 2
Note that is rational and is not divisible by nor because .
This means the decimal representation of is a repeating decimal.
Let us set as the block that repeats in the repeating decimal: .
( written without the overline used to signify one number so won't confuse with notation for repeating decimal)
The fractional representation of this repeating decimal would be .
Taking the reciprocal of both sides you get .
Multiplying both sides by gives .
Since we divide on both sides of the equation to get .
Because is not divisible by (therefore ) since and is prime, it follows that .
Picture 1
Picture 2