Difference between revisions of "Discriminant"
I like pie (talk | contribs) m |
(→Introductory) |
||
Line 5: | Line 5: | ||
* (AMC 12 2005) There are two values of <math>a</math> for which the equation <math>4x^2+ax+8x+9=0</math> has only one solution for <math>x</math>. What is the sum of these values of <math>a</math>? | * (AMC 12 2005) There are two values of <math>a</math> for which the equation <math>4x^2+ax+8x+9=0</math> has only one solution for <math>x</math>. What is the sum of these values of <math>a</math>? | ||
− | Solution: Since we want the <math>a</math>'s where there is only one solution for <math>x</math>, the discriminant has to be <math>0</math>. <math>(a+8)^2-4 | + | Solution: Since we want the <math>a</math>'s where there is only one solution for <math>x</math>, the discriminant has to be <math>0</math>. <math>(a+8)^2-4(4)(9)=a^2+16a-80=0</math>. The sum of these values of <math>a</math> is <math>-16</math>. |
=== Intermediate === | === Intermediate === |
Revision as of 13:47, 14 May 2014
The discriminant of a quadratic equation of the form is the quantity . When are real, this is a notable quantity, because if the discriminant is positive, the equation has two real roots; if the discriminant is negative, the equation has two nonreal roots; and if the discriminant is 0, the equation has a real double root.
Example Problems
Introductory
- (AMC 12 2005) There are two values of for which the equation has only one solution for . What is the sum of these values of ?
Solution: Since we want the 's where there is only one solution for , the discriminant has to be . . The sum of these values of is .